现代制造工程 ›› 2025, Vol. 535 ›› Issue (4): 36-44.doi: 10.16731/j.cnki.1671-3133.2025.04.004

• 智能制造 • 上一篇    下一篇

基于双目视觉的乱序气门芯点云分割及抓取*

刘怀广1,2, 王创1,2, 苗泽志3   

  1. 1 武汉科技大学冶金装备及其控制教育部重点实验室,武汉 430081;
    2 武汉科技大学机器人与智能系统研究院,武汉 430081;
    3 无锡鑫瑞能智能装备有限公司技术部,无锡 214204
  • 收稿日期:2024-09-11 出版日期:2025-04-18 发布日期:2025-05-08
  • 通讯作者: 王创,硕士研究生,主要研究方向为点云处理、智能制造。E-mail:liuhuaiguang@wust.edu.cn;2660249846@qq.com
  • 作者简介:刘怀广,博士,副教授,主要研究方向为机器视觉、图像处理和智能制造。
  • 基金资助:
    * 国家自然科学基金项目(52272377)

Disordered valve core point cloud segmentation and grasping based on binocular vision

LIU Huaiguang1,2, WANG Chuang1,2, MIAO Zezhi3   

  1. 1 Key Lab of Metallurgical Equipment and its Control,Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China;
    2 Institute of Robotics and Intelligent Systems,Wuhan University of Science and Technology, Wuhan 430081,China;
    3 Technical Department,Wuxi Xinruineng Intelligent Equipment Co.,Ltd.,Wuxi 214204,China
  • Received:2024-09-11 Online:2025-04-18 Published:2025-05-08

摘要: 气门芯工件乱序堆叠时,机械臂难以自动抓取上层裸露的气门芯,通过处理双目相机采集的点云信息,提出了一种基于表面曲率加权拟合的点云分割算法。首先,进行滤波下采样,并利用随机采样一致性(Random Sample Consensus,RANSAC)算法去除冗余的平面点云,通过聚类去除噪声点;然后,为解决气门芯边缘点粘连的问题,利用最小二乘法拟合局部平面,并根据表面曲率的加权平均得到动态曲率阈值,去除相邻气门芯之间的粘连点;最后,通过主成分分析算法计算气门芯的有向包围盒(Oriented Bounding Box,OBB)底面积,进行区间检验以实现迭代欧氏距离阈值,通过聚类准确分割出待抓取的气门芯。实验结果表明,气门芯点云分割的准确率在95 %以上;求取分割出气门芯质心点并结合直线拟合算法确定抓取位姿;Dobot机械臂通过与双目相机的手眼标定能够准确识别并抓取气门芯。

关键词: 气门芯抓取, 点云分割, 随机采样一致性, 曲率估计, 有向包围盒, 手眼标定

Abstract: When valve core workpieces are stacked in disordered order,it is difficult for the robotic arm to automatically grasp the upper exposed valve cores.A point cloud segmentation algorithm based on surface curvature weighted fitting was proposed by processing the point cloud information collected by binocular camera. First,filter downsampling was performed and the redundant planar point cloud was removed using the Random Sample Consensus (RANSAC) algorithm,and the noise points were removed by clustering. Then,in order to solve the problem of sticking points at the edge of valve cores,the local plane was fitted using the least squares method and the dynamic curvature threshold was obtained based on the weighted average of surface curvature to remove the sticking points between the adjacent valve cores. Finally,the bottom area of the Oriented Bounding Box (OBB) of the valve core was calculated by the principal component analysis algorithm,and the interval test was performed to realize the iterative Euclidean distance threshold,so as to accurately segment the valve cores to be grasped by clustering. The experimental results show that the accuracy of valve core point cloud segmentation is over 95 %,the center of mass of the segmented valve core is obtained,and the grasping position is determined by combining with the linear fitting algorithm,and the Dobot robotic arm is able to accurately recognize and grasp the valve core through hand-eye calibration with the binocular camera.

Key words: valve core grasping, point cloud segmentation, RANSAC, curvature estimation, OBB, hand-eye calibration

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn