[1] PATLE B K,BABUL G,PANDEY A,et al.A review:on path planning strategies for navigation of mobile robot[J].Defence Technology,2019,15(4):582-606. [2] ZAFAR M N,MOHANTA J C.Methodology for path planning and optimization of mobile robots:a review[J].Procedia Computer Science,2018,133:141-152. [3] GIUSEPPE F P,RENE K,FABIO S B,et al.Planning and control of autonomous mobile robots for intralogistics:literature review and research agenda[J].European Journal of Operational Research,2021,294(2):405-426. [4] 李逸飞,王书亭,熊体凡,等.兼顾启停特性和转角时耗的移动机器人路径规划[J].西安交通大学学报,2023,57(2):192-202. [5] JIANG H J,SUN Y.Research on global path planning of electric disinfection vehicle based on improved A* algorithm[J].Energy Reports,2021,7:1270-1279. [6] 马少博,王立勇,丁炳超,等.方向性JPS的移动机器人全局路径规划方法[J].重庆理工大学学报(自然科学),2022,36(10):192-199. [7] 陆皖麟,雷景森,邵炎.基于改进A*算法的移动机器人路径规划[J].兵器装备工程学报,2019,40(4):197-201. [8] MASEKO B B,DAALEN C E,TREURNICHT J.Optimised informed RRTs for mobile robot path planning[J].IFAC-Papers OnLine,2021,54(21):157-162. [9] 王海芳,崔阳阳,李鸣飞,等.基于改进RRT*FN的移动机器人路径规划算法[J].东北大学学报(自然科学版),2022,43(9):1217-1224,1249. [10] SARKAR R,BARMAN D,CHOWDHURY N.Domain knowledge based genetic algorithms for mobile robot path planning having single and multiple targets[J].Journal of King Saud University-Computer and Information Sciences,2022,34:4269-4283. [11] 何心,李志恒,李冰,等.一种改进蚁群算法的移动机器人路径规划研究[J].现代制造工程,2023(2):36-43. [12] XUE H.A quasi-reflection based SC-PSO for ship path planning with grounding avoidance[J].Ocean Engineering,2022,247:110772. [13] 王思鹏,杜昌平,郑耀.基于强化学习的扑翼飞行器路径规划算法[J].控制与决策,2022,37(4):851-860. [14] 雷超帆,赵华东,江南.融合粒子群与蚁群算法的机器人路径规划[J].重庆理工大学学报(自然科学),2020,34(1):235-241. [15] 代婷婷.基于改进智能算法的机器人路径规划问题研究[J].成都大学学报(自然科学版),2021,40(4):379-383. [16] 胡春阳,姜平,周根荣.改进蚁群算法在AGV路径规划中的应用[J].计算机工程与应用,2020,56(8):270-278. [17] 荆学东,杜黎童,郭泰,等.基于混合参数蚁群算法的移动机器人路径规划[J].机床与液压,2022,50(9):41-47. [18] 陈晖,周德强.改进蚁群优化算法的移动机器人路径规划[J].电子测量技术,2020,43(23):17-22. [19] 马小陆,梅宏.基于改进势场蚁群算法的移动机器人全局路径规划[J].机械工程学报,2021,57(1):19-27. [20] 陈德童,刘贤达,刘生伟.基于双向搜索改进A*算法的自动导引车路径规划[J].计算机应用,2021,41(S2):309-313. [21] 张子然,黄卫华,陈阳,等.基于双向搜索的改进蚁群路径规划算法[J].计算机工程与应用,2021,57(21):270-277. [22] 马向华,张谦.改进蚁群算法在机器人路径规划上的研究[J].计算机工程与应用,2021,57(5):210-215. |