[1] 郭勇,赖广.工业机器人关节空间轨迹规划及优化研究综述[J].机械传动,2020,44(2):154-165. [2] 董理,杨东,鹿建森.工业机器人轨迹规划方法综述[J].控制工程,2022,29(12):2365-2374. [3] ZHAN F,XIA R F,CHEN X X. An optimal trajectory planning algorithm for autonomous trucks:architecture,algorithm,and experiment[J]. International Journal of Advanced Robotic Systems,2020,17(2):429-434. [4] CHENG S B,YANG G C,JIN M H,et al. A novel strategy for a 7-DOF space manipulator transferring a captured target with collision avoidance[J]. Advances in Space Research,2024,73 (12):6255-6273. [5] CHEN T,WANG Y K,WEN H,et al. Autonomous assembly of multiple flexible spacecraft using RRT* algorithm and input shaping technique[J].Nonlinear Dynamics,2023,111(12):11223-11241. [6] ZHU Z X,YIN Y,LYU H G. Automatic collision avoidance algorithm based on route-plan-guided artificial potential field method[J]. Ocean Engineering,2023,271:113737. [7] GUPTA P,PRATIHAR D K,DEB K. Analysis and optimization of gait cycle of 25-DOF NAO robot using particle swarm optimization and genetic algorithms[J]. International Journal of Humanoid Robotics,2023,21 (2):2350011. [8] CHEN Y Q,GUO J L,YANG H D,et al. Research on navigation of bidirectional A* algorithm based on ant colony algorithm[J].The Journal of Supercomputing,2020,77(2):1-18. [9] AKDAG M,PEDERSEN T A,FOSSEN T I,et al. A decision support system for autonomous ship trajectory planning[J]. Ocean Engineering,2024,292:116562. [10] GONG S M,MENG W,BO G,et al. Bayesian optimization enhanced deep reinforcement learning for trajectory planning and network formation in multi-UAV networks[J]. IEEE Transactions on Vehicular Technology,2023,72(8):10933-10948. [11] PALACIOS M E,INCA S,MONSERRAT J F. Multipath planning acceleration method with double deep r-learning based on a genetic algorithm[J]. IEEE Transactions on Vehicular Technology,2023,72(10):12681-12696. [12] LEE H T,KIM M K. Optimal path planning for a ship in coastal waters with deep Q network[J]. Ocean Engineering,2024,307:118193. [13] XUE D L,WU D F,YAMASHITA A S,et al. Proximal policy optimization with reciprocal velocity obstacle based collision avoidance path planning for multi-unmanned surface vehicles[J]. Ocean Engineering,2023,273:114005. [14] ZHANG K X,RUAN J G,LI T Y,et al. The effects investigation of data-driven fitting cycle and deep deterministic policy gradient algorithm on energy management strategy of dual-motor electric bus[J]. Energy,2023,269:126760. [15] YANG Y,LI J T,PENG L L. Multi-robot path planning based on a deep reinforcement learning DQN algorithm[J]. CAAI Transactions on Intelligence Technology,2020,5(3):177-183. [16] 胡晓东,张宽,谢圆,等.“嫦娥五号”月面采样机械臂路径规划[J].深空探测学报(中英文),2021,8(6):564-571. [17] JIN X,WANG Z X. Proximal policy optimization based dynamic path planning algorithm for mobile robots[J]. Electronics Letters,2021,58 (1):13-15. [18] LIN J F,HAN Y,GAO C Y,et al. Intelligent ship anti-rolling control system based on a deep deterministic policy gradient algorithm and the Magnus effect[J]. Physics of Fluids,2022,34(5):1-10. [19] ZHOU C,WANG Y T,WANG L,et al. Obstacle avoidance strategy for an autonomous surface vessel based on modified deep deterministic policy gradient[J]. Ocean Engineering,2022,243:110166. [20] YU J M,SUN H,SUN J Q. Improved twin delayed deep deterministic policy gradient algorithm based real-time trajectory planning for parafoil under complicated constraints[J]. Applied Sciences,2022,12(16):8189. [21] 李跃,邵振洲,赵振东,等.面向轨迹规划的深度强化学习奖励函数设计[J].计算机工程与应用,2020,56(2):226-232. [22] WANG H J,GAO W,WANG Z,et al. Research on obstacle avoidance planning for UUV based on A3C algorithm[J]. Journal of Marine Science and Engineering,2023,12(1):63. [23] GAO Q,LIU Y B,ZHAO J B,et al. Hybrid deep learning for dynamic total transfer capability control[J]. IEEE Transactions on Power Systems,2021,36(3):2733-2736. [24] LILLICRAP T P,HUNT J J,PRITZEL A,et al. Continuous control with deep reinforcement learning[J]. Arxiv Preprint Arxiv,2015,25:1-10. [25] TAN Y Q,SHEN Y X,YU X Y,et al. Low carbon economic dispatch of the combined heat and powervirtual power plants:a improved deep reinforcement learningbased approach[J]. IET Renewable Power Generation,2022,17(4):982-1007. [26] ZHENG Q Y,TIAN Y,DENG Y,et al. Reinforcement learning-based control of single-track two-wheeled robots in narrow terrain[J]. Actuators,2023,12(3):109. [27] CHEN S G,TANG B,WANG K. Twin delayed deep deterministic policy gradient-based intelligent computation offloading for IoT[J]. Digital Communications and Networks,2023,9(4):836-845. [28] LI J T,ZHANG T X,LIU K. Memory-Enhanced Twin Delayed Deep Deterministic Policy Gradient (ME-TD3)-based unmanned combat aerial vehicle trajectory planning for avoiding radar detection threats in dynamic and unknown environments[J]. Remote Sensing,2023,15 (23):5494. [29] 江安旎,杜煜,原颖,等.基于GA-TD3算法的交叉路口决策模型[J].计算机应用研究,2024,41(7):1-7. [30] ZHOU Y T,KONG X R,LIN K P,et al. Novel task decomposed multi-agent twin delayed deep deterministic policy gradient algorithm for multi-UAV autonomous path planning[J]. Knowledge-Based Systems,2024,287:111462. [31] 杨淑华,谢晓波,邴振凯,等.基于HER-TD3算法的青皮核桃采摘机械臂路径规划[J].农业机械学报,2024,55(4):113-123. [32] HU Y,CAO N,LU H,et al. Multi-dimensional resource management with deep deterministic policy gradient for digital twin-enabled industrial internet of things in 6 generation[J]. Transactions on Emerging Telecommunications Technologies,2024,35(4):e4962. [33] 李亚,王卫岗,张原,等.基于改进型TD3算法的车载边缘计算任务卸载决策[J].电子测量技术,2024,47(6):64-70. [34] CAI R G,LI X. Path planning method for manipulators based on improved twin delayed deep deterministic policy gradient and RRT*[J]. Applied Sciences,2024,14(7):2765. |