现代制造工程 ›› 2018, Vol. 455 ›› Issue (8): 123-127.doi: 10.16731/j.cnki.1671-3133.2018.08.023

• 仪器仪表/检测/监控 • 上一篇    下一篇

量测不一致性条件下多传感器融合算法研究

徐建亮1,顾怡红1,2,魏小华1   

  1. 1 衢州职业技术学院机电工程学院,衢州 324000;
    2 浙江大学机械工程学院,杭州 310027
  • 收稿日期:2017-02-27 出版日期:2018-08-20 发布日期:2018-09-27
  • 作者简介:徐建亮,讲师,主要研究方向:计算机辅助设计与图形学、机器视觉与模式识别。E-mail:398783048@qq.com
  • 基金资助:
    浙江省教育厅项目(11076025);衢州科技计划项目(2017G12,2017T02)

Research of multi-sensor data fusion algorithms in measurement inconsistency

Xu Jianliang1,Gu Yihong1,2,Wei Xiaohua1   

  1. 1 School of Electronic and Mechanical Engineering,Quzhou College of Technology,Quzhou 324000, Zhejiang,China;
    2 College of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China
  • Received:2017-02-27 Online:2018-08-20 Published:2018-09-27

摘要: 由于传感器提供的抽象数据总是受到测量过程中不确定性因素的影响,多传感器利用多源数据融合算法,消除传感器间可能存在的虚假或错误数据,以降低其不确定性。提出一种基于粒子滤波算法(PFA)的改进贝叶斯方法(IBA),其中基于粒子滤波有3种算法结构,即:前置粒子滤波算法(P-IBA)、后置粒子滤波算法(IBA-P)和前后置粒子滤波算法(P-IBA-P)。通过三维点云数据分析实验表明,P-IBA具有最小的CPU运行时间t,P-IBA-P比IBA-P拥有最小的评价函数值EF,可见,在P-IBA-P和IBA-P两种算法中,由于粒子滤波器的存在且起到决定性的作用,使得基于粒子滤波的改进贝叶斯算法(P-IBA-P)误差最小,精度最高,融合效果最好。改进的贝叶斯方法与粒子滤波相结合的技术,有助于处理集中式和分散式融合架构的数据不一致问题,在对测量时间要求不高的情况下,使用P-IBA-P算法的测量效果最好。

关键词: 多传感器融合, 改进贝叶斯方法, 粒子滤波算法

Abstract: Data provided by sensors is always affected by some level of uncertainty or lack of certainty in the measurements.Combining data from multiple sources using multi-sensor data fusion algorithms eliminates the false or incorrect data and exploits the data redundancy to reduce this inconsistency from sensors.Proposes an novel approach to multi-sensor data fusion that relies on combining a Improved Bayesian Approach (IBA) with Particle Filter Algorithm (PFA).Three different methods namely:Pre-Particle Filtering (P-IBA),Post-Particle Filtering (IBA-P) and Pre-Post-Particle Filtering (P-IBA-P) are described based on how filtering is applied to the sensor data,to the fused data or both.A case study of multi-sensor data fusion using optical algorithms is presented.Experimental shows that the shortest running time t was the P-IBA of the decentralized system,overall,the P-IBA-P had the least value of the evaluation function EF and then follows it the IBA-P with a very small difference.This is a reasonable result because the presence of the particle filters,produces estimates with less noise than the measurements and close to the accuracy of the theoretical states.combining Bayesian fusion with particle filtering helps in handling the problem of inconsistency of the data in both centralized and decentralized data fusion architectures.it would be recommended to use P-IBA-P in applications where time is an important factor.

Key words: multi-sensor data fusion, Improved Bayesian Approach (IBA), Particle Filter Algorithm (PFA)

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn