现代制造工程 ›› 2024, Vol. 526 ›› Issue (7): 100-108.doi: 10.16731/j.cnki.1671-3133.2024.07.013

• 制造技术/工艺装备 • 上一篇    下一篇

基于RSM和MOPSO的轴承沟道磨削工艺参数优化*

蒋心想, 李成, 时建纬, 陈栋   

  1. 郑州大学机械与动力工程学院,郑州 450001
  • 收稿日期:2023-09-14 出版日期:2024-07-18 发布日期:2024-07-30
  • 通讯作者: 陈栋,博士,讲师,主要研究方向为复合材料成型、数值仿真和界面接合强度。E-mail:chen.dong@zzu.edu.cn
  • 作者简介:蒋心想,硕士,主要研究方向为滚动轴承精密加工。E-mail:2249321423@qq.com。李成,博士,教授,主要研究方向为工业智能制造、数字孪生、复合材料的风机叶片及叶形设计。时建纬,博士,讲师,主要研究方向为机器学习、优化设计、热传导、信号处理及超声/CT无损检测。
  • 基金资助:
    *国家自然科学基金项目(12302106);河南省水下智能装备重点实验室开放基金项目(ZT22064U)

Optimization of bearing raceway grinding process parameters based on RSM and MOPSO

JIANG Xinxiang, LI Cheng, SHI Jianwei, CHEN Dong   

  1. School of Mechanical and Power Engineering,Zhengzhou University,Zhengzhou 450001,China
  • Received:2023-09-14 Online:2024-07-18 Published:2024-07-30

摘要: 探究角接触球轴承内圈沟道精磨工艺参数与加工质量的响应关系,确定最优工艺参数组,提高沟道加工质量。采用响应面法(RSM)与多目标粒子群优化(MOPSO)算法优化影响沟道加工质量的磨削深度、砂轮线速度和工件转速。首先利用RSM建立以沟道表面粗糙度和圆度误差为响应的显著不失拟模型;然后通过方差分析和响应曲面图研究工艺参数对响应的交互影响规律;最后采用MOPSO算法对模型进行多目标优化,利用K-means聚类法求解最优解集的折衷解,并进行试验验证。结果表明,磨削深度和砂轮线速度对沟道表面粗糙度和圆度误差影响极显著,工件转速对圆度误差的影响极显著,对表面粗糙度的影响显著;磨削深度与工件转速的交互作用对表面粗糙度影响显著,砂轮线速度与工件转速、磨削深度的交互作用对圆度误差影响显著。最优工艺参数组经试验验证,表面粗糙度和圆度误差较优化前分别减小了8.14 %和16.03 %。基于RSM和MOPSO算法结合的回归模型整体和单个变量显著,且有较高的预测精度,寻优后的工艺参数组可获得良好的优化效果。

关键词: 角接触球轴承, 响应面法, 多目标粒子群优化算法, 沟道磨削, 参数优化

Abstract: The response relationship between process parameters and machining quality of inner raceway precision grinding of angular contact ball bearings was explored, and the optimal process parameter set to improve raceway machining quality was identitying. Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization (MOPSO) algorithm were used to optimize the grinding depth, grinding wheel speed, and workpiece speed that affect raceway machining quality. First, the RSM was used to establish a significant non-degenerate model with the surface roughness and roundness error as responses. Then, variance analysis and surface plots were used to study the interactive effects of process parameters on the responses. Finally, the MOPSO algorithm was applied for optimizing the model, and K-means clustering method was used to solve the compromised solution of the optimal solution set, and experimental validation was conducted. The results showed that grinding depth and grinding wheel linear speed had highly significant effect on the surface roughness and roundness error of the raceways, and workpiece speed had highly significant effect on the roundness error and a significant effect on the surface roughness. The interaction between grinding depth and workpiece speed had a significant effect on the surface roughness, and the interaction of grinding wheel linear speed with workpiece speed and grinding depth had a significant effect on the roundness error. The optimized parameter set was verified by experiments, and the surface roughness and roundness error were reduced by 8.14 % and 16.03 %, respectively, compared to preoptimization. The regression model based on RSM and MOPSO algorithm is significant for the whole and individual variables, and has high prediction accuracy, and the optimized process parameter set can obtain good optimization results.

Key words: angular contact ball bearing, Response Surface Methodology (RSM), Multi-Objective Particle Swarm Optimization (MOPSO) algorithm, raceway grinding, parameter optimization

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn