现代制造工程 ›› 2025, Vol. 534 ›› Issue (3): 52-59.doi: 10.16731/j.cnki.1671-3133.2025.03.006

• 智能制造 • 上一篇    下一篇

融合时空特征的离散车间生产-物流协同状态预测*

刘从颖1, 张朝阳1,2, 何家威1   

  1. 1 江南大学机械工程学院,无锡 214122;
    2 江苏省食品先进制造装备技术重点实验室,无锡 214122
  • 收稿日期:2024-07-15 发布日期:2025-03-28
  • 通讯作者: 张朝阳,博士,副教授,主要研究方向为智能制造系统与低碳制造。E-mail:cyzhang@jiangnan.edu.cn
  • 作者简介:刘从颖,硕士研究生,主要研究方向为智能制造系统。E-mail:liucongying0725@163.com
  • 基金资助:
    *国家自然科学基金青年科学基金项目(51805213)

Prediction of production-logistics collaboration state in discrete manufacturing workshop based on spatio-temporal feature

LIU Congying1, ZHANG Chaoyang1,2, HE Jiawei1   

  1. 1 School of Mechanical Engineering,Jiangnan University,Wuxi 214122,China;
    2 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology,Wuxi 214122,China
  • Received:2024-07-15 Published:2025-03-28

摘要: 针对离散车间生产过程复杂、异常扰动频发等因素导致的状态预测难执行问题,提出了一种融合时空特征的离散车间生产-物流协同状态预测方法。首先,基于生产-物流运行逻辑与实时制造数据,分析生产-物流协同关系,确定了生产-物流协同状态的预测指标;其次,根据生产-物流时空特征关系,建立生产-物流时序图模型,进而采用基于图注意力网络-门控循环单元(GAT-GRU)的时空融合网络,对协同状态的预测指标进行预测;最后,对典型的混流生产车间进行案例分析,实验结果表明,所提预测方法在准确性和效率上均优于深度神经网络、去噪自动编码器和门控循环单元等模型,能更加有效地实现生产-物流协同状态预测。

关键词: 生产-物流协同, 时空特征, 图注意力网络, 门控循环单元

Abstract: In order to solve the problem that the state prediction is difficult to perform due to the complex production process and frequent abnormal disturbances in the discrete workshop,a collaborative state prediction method of workshop production-logistics based on spatio-temporal feature was proposed. Firstly,based on the production-logistics operation logic and real-time manufacturing data,the production-logistics collaboration relationship was analyzed,and the prediction index of the production-logistics collaboration state was determined. Secondly,according to the spatio-temporal feature relationship between production and logistics,a production-logistics time sequence graph model was established,and then the spatio-temporal fusion network based on Graph Attention network-Gated Recurrent Unit (GAT-GRU) was used to predict the prediction indicators of the cooperative state. Finally,a typical mixed-flow production workshop was used as a case study,and the experimental results show that the proposed prediction method was better than the deep neural network,denoising autoencoder,gated recurrent unit and other models in terms of accuracy and efficiency,and can more effectively realize the production-logistics collaborative state prediction.

Key words: production-logistics collaboration, spatio-temporal feature, graph attention network, gated recurrent unit

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn