现代制造工程 ›› 2025, Vol. 535 ›› Issue (4): 1-10.doi: 10.16731/j.cnki.1671-3133.2025.04.001

• 先进制造系统管理运作 •    下一篇

基于改进IGA的多品种变批量智能车间调度*

刘晋飞1, 刘乙涵2, 陈明2, 黄华1   

  1. 1 同济大学中德工程学院,上海 201804;
    2 同济大学机械能源工程学院,上海 201804
  • 收稿日期:2024-06-11 出版日期:2025-04-18 发布日期:2025-05-08
  • 通讯作者: 陈明,博士,教授,主要研究方向为产品数字化开发技术、故障诊断与服务工程。E-mail:1397246915qq.com
  • 作者简介:刘晋飞,博士,副教授,主要研究方向为分布式协同控制与决策等。刘乙涵,硕士,工程师,主要研究方向为智能优化算法、作业车间调度。
  • 基金资助:
    * 国家自然科学基金项目(71601144)

Intelligent workshop scheduling with multiple varieties and variable batches based on improved IGA

LIU Jinfei1, LIU Yihan2, CHEN Ming2, HUANG Hua1   

  1. 1 Sino-German College of Applied Sciences,Tongji University,Shanghai 201804,China;
    2 School of Mechanical Engineering,Tongji University,Shanghai 201804,China
  • Received:2024-06-11 Online:2025-04-18 Published:2025-05-08

摘要: 针对多品种、变批量的高复杂度智能制造场景,频繁更换刀具、夹具及工装等情况造成的实际生产调度和理论生产调度脱节的问题,定义了两个参量,即机器准备时间(Machine Preparation Duration,MPD)和机器加工系数(Machine Processing Coefficient,MPC),以最小化最大完工时间、机器总时间负荷和机器总准备时间为目标函数,建立了引入MPC参数的多品种、变批量智能车间调度数学模型;设计了融合非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-Ⅱ,NSGA-Ⅱ)和免疫遗传算法(Immune Genetic Algorithm,IGA)的非支配免疫遗传算法(Non-dominated Sorting Immune Genetic Algorithm-Ⅱ,NSIGA-Ⅱ)来求解此类问题。该算法采用多种方式进行初始化,提出了一种综合考虑非支配排序和目标函数值大小的得分策略来筛选优秀个体,同时为了提高种群的多样性,引入种群分层和自适应交叉突变的策略。最后,通过多组对比实验验证了该算法的有效性以及在探索最优解时具有稳定性好、解质量高等优点。

关键词: 机器准备时间, 非支配排序算法, 免疫遗传算法, 智能车间调度

Abstract: In view of the problem of disconnection between actual production scheduling and theoretical production scheduling due to frequent replacement of tools,fixtures,etc. in high-complexity intelligent manufacturing scenarios with multiple varieties and variable batches, it defines two coefficients,Machine Preparation Duration (MPD) and Machine Processing Coefficient (MPC), constructs an intelligent workshop scheduling mathematical model with multiple varieties and variable batches that introduces MPC parameters and takes minimizing maximum processing machine duration, the total machine load time and the total machine preparation time as the objective functions, designs a new solving algorithm Non-dominated Sorting Immune Genetic Algorithm-Ⅱ (NSIGA-Ⅱ) that combines Non-dominated Sorting Genetic Algorithm-Ⅱ (NGSA-Ⅱ) and Immune Genetic Algorithm (IGA). This algorithm uses a variety of methods for initialization,and proposes a scoring strategy that comprehensively considers non-dominated sorting and the size of the objective function value to select good individuals. At the same time,in order to improve the diversity of the population,it introduces the strategy of population stratification and adaptive cross-mutation. Finally,multiple sets of comparative experiments verify the effectiveness of this algorithm and its advantages of good stability and high solution quality when exploring optimal solutions.

Key words: machine preparation duration, NGSA-Ⅱ, immune genetic algorithm, intelligent shop scheduling

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn