现代制造工程 ›› 2025, Vol. 535 ›› Issue (4): 140-150.doi: 10.16731/j.cnki.1671-3133.2025.04.017

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

基于RBF神经网络的4-PPPS并联机构位姿误差补偿*

金奕扬1, 李磊1, 许家伟1, 汪建华2, 王国伟1, 许润康1   

  1. 1 江苏科技大学机械工程学院,镇江 212000;
    2 广船国际有限公司,广州 510000
  • 收稿日期:2024-09-29 出版日期:2025-04-18 发布日期:2025-05-08
  • 通讯作者: 李磊,博士,教授,主要研究方向为智能制造及其工艺技术。E-mail:danieljin2018@126.com;lilei0064@sina.com
  • 作者简介:金奕扬,硕士研究生,主要研究方向为船舶海工装备制造。
  • 基金资助:
    * 国家基础科研项目(JCKY2021414B011)

Pose error compensation of 4-PPPS parallel mechanism based on RBF neural network

JIN Yiyang1, LI Lei1, XU Jiawei1, WANG Jianhua2, WANG Guowei1, XU Runkang1   

  1. 1 Department of Mechanical Engineering,Jiangsu University of Science and Technology, Zhenjiang 212000,China;
    2 Guangzhou Shipyard International Co., Ltd., Guangzhou 510000,China
  • Received:2024-09-29 Online:2025-04-18 Published:2025-05-08

摘要: 为了解决船舶调姿机构结构误差引起的船舶总段对接精度下降问题,以4-PPPS并联机构为研究对象,首先采用闭环矢量法建立包含32个误差项的动平台位姿误差模型,然后具体分析其中便于测量的16种结构误差参数对动平台位姿精度的影响规律。误差分析结果表明,沿轨道方向移动副长度误差对4-PPPS并联机构运动精度影响最大,在4条支链均存在误差的情况下,Z轴方向动平台位姿误差达到1.5 mm。同时,为克服传统误差参数辨识难度较大的问题,提出一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化径向基函数(Radial Basis Function,RBF)神经网络的补偿方法。该方法将位姿误差转化为驱动关节长度误差,通过神经网络建立动平台理论位姿与驱动关节长度误差的预测模型,并采用鲸鱼优化算法优化网络参数,最终获得驱动关节长度补偿量,用来修正动平台的实际位姿并完成误差补偿。经过仿真验证,该方法能够有效提升4-PPPS并联机构的运动精度,动平台在X、Y、Z轴方向的误差均值分别由0.169、0.188、0.159 mm降至0.002、0.001、0.003 mm,误差最大值分别由0.208、0.231、0.195 mm降至0.012、0.001、0.019 mm,平均位姿精度提高了85.07 %,补偿效果显著。

关键词: 并联机构, 误差分析, 误差补偿, RBF神经网络, 鲸鱼优化算法

Abstract: To address the issue of decreased accuracy in the block docking due to structural errors,the 4-PPPS parallel mechanism was focused.Initially,a closed-loop vector method was employed to establish a structural error model including 32 error terms.Subsequently,the influence of 16 measurable structural error parameters on the pose accuracy of the dynamic platform was specifically analyzed. It reveals that the length error of the moving pair along track direction has the greatest impact on the motion accuracy of the parallel mechanism,with a position error of 1.5 mm in the Z-axis direction when all four limbs exhibit such errors.Therefore,a compensation method based on the Whale Optimization Algorithm (WOA) optimized Radial Basis Function (RBF) neural network was proposed. By transforming pose errors into actuator length errors,it established a predictive model between theoretical pose of the dynamic platform and actuator length errors. After optimizing the network parameters,it yielded the actuator length compensation to correct the actual pose of the dynamic platform. Simulation results validate the effectiveness of this method in enhancing the motion accuracy of the parallel mechanism. Specifically,the mean errors in the X,Y,and Z directions are reduced from 0.169,0.188 and 0.159 mm to 0.002,0.001 and 0.003 mm,respectively. The maximum errors decrease from 0.208,0.231 and 0.195 mm to 0.012,0.001 and 0.019 mm,respectively. The average pose accuracy is improved by 85.07 %,demonstrating a significant compensation effect.

Key words: parallel mechanism, error analysis, error compensation, Radial Basis Function (RBF) neural network, Whale Optimization Algorithm (WOA)

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn