现代制造工程 ›› 2025, Vol. 536 ›› Issue (5): 1-11.doi: 10.16731/j.cnki.1671-3133.2025.05.001

• 试验研究 •    下一篇

基于改进TD3的山地无人作业底盘姿态控制方法*

李希明1, 刘业通1, 彭世康2, 吴湘柠2, 李恒强1, 蒙艳玫1   

  1. 1 广西大学机械工程学院,南宁 530004;
    2 广西机械工业研究院有限公司,南宁 530001
  • 收稿日期:2024-11-06 出版日期:2025-05-18 发布日期:2025-05-30
  • 通讯作者: 蒙艳玫,E-mail:1361064345@qq.com
  • 作者简介:李希明,硕士研究生,主要研究方向为主动悬架控制策略研究。
  • 基金资助:
    *国家自然科学基金项目(52365001);广西科技重大专项项目(桂科AA23062040-3)

Attitude control method for mountain unmanned operation chassis based on improved TD3

LI Ximing1, LIU Yetong1, PENG Shikang2, WU Xiangning2, LI Hengqiang1, MENG Yanmei1   

  1. 1 School of Mechanical Engineering,Guangxi University,Nanning 530004,China;
    2 Guangxi Machinery Industry Research Institute Co.,Ltd.,Nanning 530001,China
  • Received:2024-11-06 Online:2025-05-18 Published:2025-05-30

摘要: 针对山地无人作业底盘在复杂道路下姿态不平稳,传统控制方法适应性、鲁棒性差等问题,提出了一种基于牛顿-拉弗森优化(Newton-Raphson-Based Optimizer,NRBO)算法、极致梯度提升树(eXtreme Gradient Boosting,XGBoost)算法和双延迟深度确定性策略梯度(Twin Delayed Deep Deterministic policy gradient,TD3)算法的底盘姿态控制策略。首先,搭建七自由度主动悬架振动模型环境;然后,训练NRBO-XGBoost的状态预测模型,在TD3算法中加入状态预测模型并在网络中加入注意力机制,增强TD3智能体在复杂环境下的决策能力和适应能力,同时设计奖励函数并训练TD3智能体,实现在复杂道路环境下的底盘姿态控制;最后,基于Matlab 2023a/Simulink软件开展仿真。仿真结果表明,基于改进TD3的底盘姿态控制策略能够有效抑制无人作业底盘在复杂道路下的姿态变化,其俯仰角、侧倾角和垂向位移分别抑制了61.4 %、84.9 %和84.9 %,显著提高了平稳性;相比传统DDPG、PPO和TD3强化学习控制策略,改进TD3算法下的俯仰角分别改善了49.1 %、7.4 %和37.2 %,侧倾角分别改善了83.3 %、36.5 %和34.7 %,垂向位移分别改善了70.7 %、77.5 %和64.0 %,垂向位移加速度分别改善了67.7 %、42.1 %和49.7 %,控制效果更好,具有更好的适应性与鲁棒性。

关键词: 山地无人作业底盘, 主动悬架控制, 改进TD3算法, 自注意力机制

Abstract: Aiming at the problems of unstable attitude of mountain unmanned operation chassis under complex roads and poor adaptability and robustness of traditional control methods,a chassis attitude control strategy based on Newton-Raphson-Based Optimizer (NRBO) algorithm,eXtreme Gradient Boosting (XGBoost) algorithm and Twin Delayed Deep Deterministic policy gradient (TD3) algorithm was proposed. Firstly,the seven-degree-of-freedom active suspension vibration model environment was built;then the state prediction model of NRBO-XGBoost was trained,the state prediction model was added to the TD3 algorithm and the attention mechanism was added to the network to enhance the decision-making ability and adaptive ability of the TD3 intelligences in complex environments,and at the same time,the reward function was designed and the TD3 intelligences were trained to realize the chassis attitude control in complex road environments; finally,simulations were carried out based on Matlab 2023a/Simulink software. The simulation results show that the chassis attitude strategy method based on the improved TD3 can effectively suppress the attitude change of unmanned operation chassis under complex roads,and the pitch angle,lateral inclination angle,and vertical displacement are suppressed by 61.4 %,84.9 %,and 84.9 %,respectively,which significantly improves the smoothness;compared with the traditional DDPG,PPO,and TD3 reinforcement learning control strategies,with the improved TD3 algorithm the pitch angle is improved by 49.1 %,7.4 % and 37.2 %,respectively,the lateral inclination angle is improved by 83.3 %,36.5 % and 34.7 %,respectively,the vertical displacement is improved by 70.7 %,77.5 % and 64.0 %,respectively,and the vertical displacement acceleration is improved by 67.7 %,42.1 % and 49.7 %,respectively,which provides a better control effect with better adaptability and robustness.

Key words: mountain unmanned operation chassis, active suspension control, improved TD3 algorithm, self-attention mechanism

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn