现代制造工程 ›› 2025, Vol. 536 ›› Issue (5): 126-134.doi: 10.16731/j.cnki.1671-3133.2025.05.016

• 仪器仪表/检测/监控 • 上一篇    下一篇

改进YOLOv8n的电磁离合器端面缺陷检测*

魏书豪, 徐红伟, 柯海森, 李孝禄, 丁建雄   

  1. 中国计量大学机电工程学院,杭州 310018
  • 收稿日期:2024-09-11 出版日期:2025-05-18 发布日期:2025-05-30
  • 作者简介:魏书豪,硕士研究生,主要研究方向为计算机视觉。徐红伟,博士,副教授,主要研究方向为检测技术与自动化装置、智能控制技术。柯海森,博士,副教授,主要研究方向为装备自动化、图像识别。李孝禄,博士,教授,主要研究方向为检测技术及装置、人工智能。丁建雄,硕士,主要研究方向为计算机视觉。E-mail:543662747@qq.com
  • 基金资助:
    *浙江省科技计划重点项目(2019C001128)

The electromagnetic clutch end face defect detection of improved YOLOv8n

WEI Shuhao, XU Hongwei, KE Haisen, LI Xiaolu, DING Jianxiong   

  1. College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou 310018,China
  • Received:2024-09-11 Online:2025-05-18 Published:2025-05-30

摘要: 电磁离合器是汽车生产过程中的重要部件,针对其端面缺陷尺寸微小、背景纹理复杂以及现有算法无法实现缺陷多样性检测等问题,提出了基于改进YOLOv8n的轻量级目标检测算法。在主干网络中融合EMA注意力和部分卷积,设计了轻量级的C2F-PE模块以改进C2F结构,增强网络的特征提取能力;为促进相同尺度间更丰富的特征融合,引入自注意力内尺度特征交互(AIFI)模块替换SPPF层,以捕获更细粒度的信息;在颈部网络中添加小目标检测层,有效地融合了浅层特征信息,提升了模型对小目标的感知力;引入Slim-neck模块改进颈部网络,轻量化模型的同时保持网络的检测精度。实验结果表明,改进后的算法相较于YOLOv8n算法,mAP@0.5达到94.6 %,提升了4.5 %,参数量减少13.3 %,检测速度达到81 f/s。该算法更好地平衡了检测精度和速度,满足电磁离合器生产中实时检测的需求。

关键词: YOLOv8n, 电磁离合器, 缺陷检测, 轻量级网络, EMA注意力, 内尺度特征交互, Slim-neck模块

Abstract: Electromagnetic clutch is an important part in the automobile production process. Aiming at the problems of small defect size of its adsorption surface,complex background texture and existing algorithms can not achieve the diversity of defects,a lightweight target detection algorithm based on improved YOLOv8n was proposed. EMA attention and partial convolution were integrated in the backbone network,and a lightweight C2F-PE module was designed to improve the C2F structure and to enhance the feature extraction ability of the network. In order to promote richer feature fusion between the same scales,the Attention-based Intra-scale Feature Interaction (AIFI) module was introduced to replace the SPPF layer to capture more fine-grained information.A small object detection layer was added to the neck network,which effectively fused the shallow feature information and improved the model perception of small objects. The Slim-neck module was introduced to improve the neck network,which lightened the model while maintaining the detection accuracy of the network. The experimental results showed that compared with the YOLOv8n algorithm,the improved algorithm achieved an mAP@0.5 of 94.6 %,which was an increase of 4.5 %. The number of parameters was reduced by 13.3 %,and the detection speed reached 81 f/s. The algorithm effectively balanced detection accuracy and speed,meeting the needs for real-time detection in electromagnetic clutch production.

Key words: YOLOv8n, electromagnetic clutch, defect detection, lightweight network, EMA attention, intra-scale feature interaction, Slim-neck module

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn