[1] 张峰,陈乃超,邢海燕. 柔性车间生产资源与AGV物流资源联合优化调度[J]. 现代制造工程, 2023(10):1-7. [2] 陈磊,王相柠,娄恒权,等. 针对产能损失的生产线瓶颈辨识与转移预测[J]. 现代制造工程,2022 (4):21-28. [3] NOREEN E W. The theory of constraints and its implications for management accounting[M]. [S.l.]:The North River Press,1995:50-65. [4] ZHENG Y Q,SU C,CAO B X,et al. Performance of bottleneck shifting for remanufacturing system considering return quality grading[J]. Journal of Southeast University,2015,31(4):516-521. [5] 周勇樟,王艳. 基于区间数聚类分析的多属性瓶颈区域识别方法[J].现代制造工程, 2022(1):1-9. [6] TU J,BAI Y,YANG M,et al. Real-Time Bottleneck in serial production lines with bernoulli machines: Theory and Case Study[J]. IEEE Transactions on Automation Science and Engineering,2021,18(4):1822-1834. [7] LAI X J,SHUI H Y,DING D X,et al. Data-driven dynamic bottleneck detection in complex manufacturing systems[J]. Journal of Manufacturing Systems,2021,60:662-675. [8] 王军强,陈剑,王烁,等. 作业车间区间型多属性瓶颈识别方法[J]. 计算机集成制造系统,2013,19(2):429-437. [9] SUBRAMANIYAN M,SKOOGH A,MUHAMMAD A,et al. A generic hierarchical clustering approach for detecting bottlenecks in manufacturing[J]. Journal of Manufacturing Systems,2020,55:143-158. [10] XING X. Bottleneck prediction of urban road network based on improved PSO algorithms and fuzzycontrol[J]. Journal of Intelligent and Fuzzy Systems,2020,39(4):5833-5843. [11] CHANG X,JIA X L. A DeepAR based hybrid probabilistic prediction model for production bottleneck of flexible shop-floor in Industry 4.0[J]. Computers & Industrial Engineering,2023,185(2):109-116. [12] 汪伟丽,郭宇,刘道元,等. 基于注意力QRNN的离散车间生产瓶颈预测[J]. 组合机床与自动化加工技术,2022,(9):151-154,159. [13] 冯雪纯. 不确定环境下离散制造系统的瓶颈识别与漂移预测[D]. 无锡:江南大学,2023. [14] 刘镇海,周友行,徐长锋. 基于Plant Simulation的路灯杆件生产线产能优化方案研究[J]. 现代制造工程,2020(1):35-42. [15] 薛政,李涛,彭世通. 不确定环境下再制造系统能耗瓶颈漂移分析[J]. 大连理工大学学报,2020,60(3):251-261. [16] CHANG Y Q,ZHANG X,SHEN Y,et al. Rail crack detection using optimal local mean decomposition and cepstral information coefficient based on electromagnetic acoustic emission technology[J]. IEEE Transactions on Instrumentation and Measurement,2024,73(1):1-12. [17] 陈启明,文青松,郎恂,等. 一元及多元信号分解发展历程与展望[J]. 自动化学报,2024,50(1):1-20. [18] SAHIN S O,KOZAT S S. Nonuniformly sampled data processing using lstm networks[J]. IEEE Transactions on Neural Networks and Learning Systems,2019,30(5):1452-1461. [19] TAN N,YU P,NI F L. New varying-parameter recursive neural networks for model-free kinematic control of redundant manipulators with limited measurements[J]. IEEE Transactions on Instrumentation and Measurement,2022,71(1):1-14. [20] GREFF K,SRIVASTAVA R K,KOUTNIK J,et al. LSTM:A search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems,2016,28(10):2222-2232. [21] BRAUWERS G,FRASINCAR F. A general survey on attention mechanisms in deep learning[J]. IEEE Transactions on Knowledge and Data Engineering,2023,35(4):3279-3298. [22] 张雯, 吴志彬,徐玖平. 基于EMD-PSO-LSSVM的碳排分解集成预测方法[J]. 控制与决策,2022,37(7):1837-1846. [23] 谭才兴,岳雨霏,汤赐. 基于QPSO-LSTM的短期风电负荷预测模型[J].中阿科技论坛,2023(12):88-91. [24] 宁小磊,陈战旗,赵新,等. 混沌映射采样的粒子滤波器[J]. 控制与决策,2011,26(12):1777-1782. [25] 马斌,吴泽忠. 基于改进的粒子群算法求解供应链网络均衡问题[J]. 运筹与管理,2020,29(2):122-128. [26] XIA M,SHAO H D,MA X D,et al. A stacked GRU-RNN-based approach for predicting renewable energy and electricity load for smart grid operation[J]. IEEE Transactions on Industrial Informatics,2021,17(10):7050-7059. [27] 张相文,范晨光,何安,等. 基于GA-BP神经网络对控制棒水力缓冲器的性能预测和结构参数优化[J]. 核动力工程,2023,44(6):162-169. [28] QIAO W B,LU H F,ZHOU G F,et al. A hybrid algorithm forcarbon dioxide emissions forecasting based on improvedlion swarm optimizer[J]. Journal of Cleaner Production,2020,244:118612. [29] 张培霄,尹晓红,李少远,等. 基于VMD-CNN-LSTM的农业大棚园区用电负荷短期预测[J]. 信息与控制,2024,53(2):238-249. [30] LI T,SHU J J,CHANG D L. Time-series prediction of settlement deformation in shallow buried tunnels based on EMD-SSA-GRNN model[J]. Scientific Reports,2024,14(1):324-330.
|