现代制造工程 ›› 2025, Vol. 537 ›› Issue (6): 150-160.doi: 10.16731/j.cnki.1671-3133.2025.06.017

• 设备设计/诊断维修/再制造 • 上一篇    

基于LMD-QPSO-LSTM的离散再制造系统动态瓶颈预测方法*

汪家炜, 王艳, 纪志成, 刘相   

  1. 江南大学物联网技术应用教育部工程研究中心,无锡 214122
  • 收稿日期:2024-07-02 出版日期:2025-06-18 发布日期:2025-07-16
  • 作者简介:汪家炜,硕士研究生,主要研究方向为制造车间瓶颈识别与应用。王艳,教授,博士生导师,教育部青年长江学者,主要研究方向为基于大数据知识自动化的离散制造能耗网络协同优化。E-mail:1366161843@qq.com
  • 基金资助:
    *国家自然科学基金资助项目(61973138);江苏省自然科学基金青年项目(BK20231037)

Dynamic bottleneck prediction method for discrete remanufacturing systems based on LMD-QPSO-LSTM

WANG Jiawei, WANG Yan, JI Zhicheng, LIU Xiang   

  1. School of Internet of Things Engineering,Jiangnan University,Wuxi 214122, China
  • Received:2024-07-02 Online:2025-06-18 Published:2025-07-16

摘要: 离散再制造业普遍存在影响生产效率的瓶颈问题,传统的静态瓶颈识别方法难以有效解决复杂再制造环境中的动态瓶颈漂移问题。针对这一现象,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)方法结合长短期记忆(Long Short-Term Memory,LSTM)网络并利用改进量子粒子群(Quantum Particle Swarm Optimization,QPSO)算法优化的LMD-QPSO-LSTM动态瓶颈预测模型。首先,采用机器能耗属性定义动态瓶颈指数,并基于LMD方法分解瓶颈序列以降低数据的波动性。其次,引入注意力机制(Attention Mechanism,AM)来增强LSTM网络的学习能力,同时采用改进的QPSO算法优化LSTM网络选取最优参数。最后,对瓶颈指数的分量进行预测,并将预测结果重构。仿真实验结果表明,基于LMD-QPSO-LSTM的动态瓶颈预测方法可以有效提高预测精度,且能够准确地跟踪瓶颈位置的变化。与其他模型相比,所提方法至少将平均绝对误差(Mean Absolute Error,MAE)降低了52.63 %,平均百分比误差(Mean Absolute Percentage Error,MAPE)降低了25.14 %,均方根误差(Root Mean Square Error,RMSE)降低了45.78 %。

关键词: 局部均值分解, 长短期记忆网络, 改进量子粒子群算法, 动态瓶颈预测, 瓶颈漂移

Abstract: Discrete manufacturing commonly faces bottleneck issues that affect production efficiency. Traditional static bottleneck identification methods cannot effectively resolve the dynamic bottleneck shifts in complex remanufacturing environments. To address this, it proposes a dynamic bottleneck prediction model termed LMD-QPSO-LSTM, which integrates Local Mean Decomposition (LMD) method with Long Short-Term Memory (LSTM) networks and utilizes an enhanced Quantum Particle Swarm Optimization (QPSO) algorithm to fine-tune LSTM. Initially, machine energy consumption attributes are used to define the dynamic bottleneck index, and LMD method is employed to decompose bottleneck sequences, thereby reducing data volatility. Subsequently, an Attention Mechanism (AM) is integrated to improve the LSTM network′s learning capability, alongside the use of an enhanced QPSO algorithm to optimize LSTM parameters for optimal selection. Finally, the components of the bottleneck index are predicted, and the prediction results are reconstructed. Simulation experiments demonstrate that the dynamic bottleneck prediction method based on LMD-QPSO-LSTM effectively enhances prediction accuracy and accurately tracks changes in bottleneck positions. Compared to other models, this approach reduces the Mean Absolute Error (MAE) by at least 52.63 %, the Mean Absolute Percentage Error (MAPE) by 25.14 %, and the Root Mean Square Error (RMSE) by 45.78 %.

Key words: local mean decomposition, long short-term memory network, improved quantum particle swarm optimization algorithm, dynamic bottleneck prediction, bottleneck drift

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn