现代制造工程 ›› 2025, Vol. 538 ›› Issue (7): 105-112.doi: 10.16731/j.cnki.1671-3133.2025.07.013

• 仪器仪表/检测/监控 • 上一篇    下一篇

基于SHUK-SVSF算法的轴孔装配孔位姿估计*

黄开启1, 邹秀梅2, 刘正超1   

  1. 1 江西理工大学机电工程学院,赣州 341000;
    2 江西理工大学电气工程与自动化学院,赣州 341000
  • 收稿日期:2024-10-09 出版日期:2025-07-18 发布日期:2025-08-04
  • 作者简介:黄开启,博士,教授,硕士生导师,主要研究方向为新能源汽车控制与机器人控制技术。E-mail:kaiqi.huang@163.com; 邹秀梅,硕士研究生,主要研究方向为智能制造与机器人控制技术。E-mail:2860855068@qq.com
  • 基金资助:
    *国家自然科学基金青年科学基金项目(52205528)

Pose estimation of peg-in-hole assembly based on SHUK-SVSF algorithm

HUANG Kaiqi1, ZOU Xiumei2, LIU Zhengchao1   

  1. 1 School of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology, Ganzhou 341000,China;
    2 School of Electrical Engineering and Automation,Jiangxi University of Science and Technology, Ganzhou 341000,China
  • Received:2024-10-09 Online:2025-07-18 Published:2025-08-04

摘要: 针对工业机械臂轴孔装配过程中孔零件易被遮挡导致模型不确定性,从而难以准确估计其孔位姿的问题,提出一种改进YOLOv8模型与自适应无迹卡尔曼滤波的孔位姿估计方法(简称SHUK-SVSF算法)。首先,为了减小孔零件被遮挡部分的响应损失,将SEAM模块引入至YOLOv8模型颈部的输出层,以提高孔位置的检测精度;其次,设计一种基于Sage-Husa算法的自适应无迹卡尔曼滤波(SHUK),实时调整测量噪声协方差矩阵,以增强动态环境下孔位姿的估计精度;最后,在无迹卡尔曼中采用变结构增益,结合无迹卡尔曼滤波的精确性和平滑变结构的稳定性,进一步提升孔位姿估计性能。实验证明:改进的YOLOv8方法在遮挡场景中表现出较高的检测精度,而所提出的SHUK-SVSF算法在满足机械臂轴孔装配过程中的视觉引导下实时性要求的同时,能够在模型不确定性条件下实现高精度﹑鲁棒的孔位姿估计。

关键词: 工业机械臂, 自适应无迹卡尔曼滤波, 遮挡响应损失, 孔零件, 位姿估计

Abstract: To address the issue of occlusion-induced model uncertainty during the assembly of industrial robotic arms,which complicates the accurate estimation of hole part poses,an improved method combining the YOLOv8 model with adaptive unscented kalman filtering,named SHUK-SVSF algorithm,was proposed. Firstly,to reduce response loss caused by occlusion and improve hole part pose detection accuracy,the SEAM module was introduced into the output layer of YOLOv8 model′s neck. Secondly,a design based on the Sage-Husa algorithm adaptive unscented kalman filter was proposed,which adjusts the measurement noise covariance matrix in real-time,thereby enhancing the stability and accuracy of pose estimation in dynamic environments. Finally,the introduction of variable structure gain within the unscented kalman filtering leverages the precision of unscented kalman filtering and the stability of smooth variable structure,further improving pose estimation performance. Experimental results demonstrate that the modified YOLOv8 method exhibits high detection accuracy in occluded scenarios,while the proposed SHUK-SVSF algorithm meets the real-time requirements for visual guidance in robotic arm assembly processes and achieves high accuracy and robustness in pose estimation under model uncertainty conditions.

Key words: industrial robotic arm, adaptive unscented kalman filtering, occlusion response loss, hole parts, pose estimation

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn