现代制造工程 ›› 2025, Vol. 538 ›› Issue (7): 120-128.doi: 10.16731/j.cnki.1671-3133.2025.07.015

• 仪器仪表/检测/监控 • 上一篇    下一篇

基于改进U-Transformer模型的金刚石刀刃异常检测算法*

王大伟, 李丛, 朱长水   

  1. 南京理工大学泰州科技学院计算机科学与工程学院,泰州 225300
  • 收稿日期:2024-09-29 出版日期:2025-07-18 发布日期:2025-08-04
  • 作者简介:王大伟,硕士,高级工程师,主要研究方向为图像处理、机器视觉。李丛,硕士,副教授,主要研究方向为智能信息处理。朱长水,硕士,副教授,主要研究方向为图像处理。E-mail:583705373@qq.com
  • 基金资助:
    *国家自然科学基金资助项目(61272210);泰州市科技支撑计划(社会发展)项目(SSF20230056)

Anomaly detection algorithm for diamond blade based on improved U-Transformer model

WANG Dawei, LI Cong, ZHU Changshui   

  1. School of Computer Science and Engineering,Taizhou Institute of Science and Technology, Nanjing University of Science and Technology,Taizhou 225300,China
  • Received:2024-09-29 Online:2025-07-18 Published:2025-08-04

摘要: 针对金刚石刀刃缺陷特征差异大、缺陷样本少的问题,提出了一种基于改进U-Transformer特征重建模型的金刚石刀刃异常检测算法。该方法仅需使用正常样本训练即可完成异常区域的检测与定位。首先,利用冻结的预训练深度卷积神经网络(Convolutional Neural Networks,CNN)模型提取多尺度融合特征,放大正常图像与异常图像的差异;然后,构建基于U型Transformer结构的编码器-解码器特征重建模型,计算重建特征与输入特征的特征相似性,生成相似性响应图;最后,为消除正常区域的噪声响应,利用多层感知机(Multi-Layer Perceptron,MLP)网络估计异常比例因子,修正相似性响应图,得到异常分数图。实验结果表明,提出的方法在金刚石刀刃缺陷数据集上Image AUROC指标为0.989,Piexl AUROC指标为0.992,能够满足金刚石刀刃异常检测需求。

关键词: 金刚石刀刃, 异常检测, U-Transformer模型, 预训练, 多层感知机网络, 特征重建

Abstract: Aiming at the problems of large differences in diamond blade defect features and limited defect samples,an anomaly detection algorithm for diamond blade based on the improved U-Transformer feature reconstruction model was proposed.This method only needs to be trained with normal samples to complete the detection and localization of abnormal areas. Firstly,a frozen pre-trained deep Convolutional Neural Networks (CNN) model was used to extract multi-scale fusion features,amplifying the differences between normal and abnormal images. Then,the encoder-decoder feature reconstruction model based on the U-Transformer structure was constructed,and the feature similarity between the reconstructed features and the input features was calculated to generate the similarity response map. Finally,to eliminate the noise responses in the normal region,the similarity response map was corrected to obtain the anomaly score map by estimating the anomaly scale factor using the Multi-Layer Perceptron (MLP) network. The experimental results demonstrate that the proposed method achieves an Image AUROC index of 0.989 and a Pixel AUROC index of 0.992 on the diamond blade defect dataset,meeting the requirements for diamond blade anomaly detection.

Key words: diamond blade, anomaly detection, U-Transformer model, pre-training, MLP network, feature reconstruction

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn