现代制造工程 ›› 2025, Vol. 539 ›› Issue (8): 79-92.doi: 10.16731/j.cnki.1671-3133.2025.08.009

• CAD/CAE/CAPP/CAM • 上一篇    下一篇

面向知识重用的挤压模具本体与知识图谱构建方法研究

王培龙1,2, 秦昊2, 郝晓曦1, 张昱1,2   

  1. 1 五邑大学机械与自动化工程学院,江门 529020;
    2 广东省科学院智能制造研究所,广州 510075
  • 收稿日期:2024-08-26 出版日期:2025-08-18 发布日期:2025-09-09
  • 通讯作者: 张昱,硕士研究生,研究员,主要研究方向为智能建模技术。E-mail:40322834@qq.com。
  • 作者简介:王培龙,硕士研究生,主要研究方向为知识图谱构建。E-mail:15263312624@163.com

Research on the construction method of extrusion die ontology and knowledge graph for knowledge reuse

WANG Peilong1,2, QIN Hao2, HAO Xiaoxi1, ZHANG Yu1,2   

  1. 1 School of Mechanical and Automation Engineering,Wuyi University,Jiangmen 529020,China;
    2 Institute of Intelligent Manufacturing,Guangdong Academy of Sciences,Guangzhou 510075,China
  • Received:2024-08-26 Online:2025-08-18 Published:2025-09-09

摘要: 针对目前铝型材挤压模具领域生产设计严重依赖设计人员的知识经验、设计工艺知识重用困难及经验知识资源丢失等问题,提出了挤压模具本体知识表示模型,探索了挤压模具知识图谱(EDKG)的构建方法。将模具设计与铝型材挤压生产相关的规则经验归纳为一般性知识,通过本体构建七步法完成挤压模具知识图谱模式层的搭建。提出一种基于IA-DBSCAN的无监督知识抽取算法,通过融合词嵌入、信息熵与词频-逆文档频率的实体特征权重,将应用在大规模挤压模具领域文本数据中抽取的知识概念添加到知识图谱数据层,实现模式层与数据层的逻辑交互。最后,通过资源描述框架文件映射规则R2RML,以铝型材挤压模具为案例实现了Neo4j图数据库的数据存储与可视化,能够直观展示模具设计、材料属性和加工工艺等多维度信息间的关联,促进了模具加工领域知识的整合与标准化。

关键词: 知识图谱, 挤压模具, 本体构建, 知识抽取, Neo4j图数据库

Abstract: Aiming at the problems that the production design of aluminum profile extrusion die field relies heavily on the knowledge and experience of designers,the design process knowledge is difficult to reuse,and the experience knowledge resources are lost,the knowledge representation model of extrusion die ontology was proposed,and the construction method of Extrusion Die Knowledge Graph (EDKG) was explored. The rule experience related to die design and aluminum profile extrusion production was summarized as general knowledge,and the knowledge graph model layer of extrusion die was completed by seven-step method of ontology construction. An unsupervised knowledge extraction algorithm based on IA-DBSCAN was proposed. By fusing the entity feature weights of word embedding,information entropy and word frequency-inverse document frequency,the knowledge concepts extracted from the text data in the field of large-scale extrusion die were added to the knowledge graph data layer to realize the logical interaction between the model layer and the data layer. Finally,through the mapping rule R2RML of the resource description framework file,the data storage and visualization of the Neo4j graph database were realized by taking the aluminum profile extrusion die as a case,which can visually display the correlation between multi-dimensional information such as die design,material properties and processing technology,and promote the integration and standardization of knowledge in the field of die processing.

Key words: knowledge graph, extrusion die, ontology construction, knowledge extraction, Neo4j graph database

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn