现代制造工程 ›› 2025, Vol. 539 ›› Issue (8): 124-133.doi: 10.16731/j.cnki.1671-3133.2025.08.014

• 工业工程 • 上一篇    下一篇

基于XGBoost模型的复杂装配线生产节拍快速预测方法

唐文斌, 董晓赛, 荣玉祥, 李亚东   

  1. 西安工程大学机电工程学院,西安 710600
  • 收稿日期:2024-08-28 出版日期:2025-08-18 发布日期:2025-09-09
  • 通讯作者: 唐文斌,博士,副教授,主要研究方向为制造系统智能建模与仿真。E-mail:tangwb@xpu.edu.cn。
  • 作者简介:董晓赛,硕士研究生,主要研究方向为制造系统智能建模与仿真。E-mail:dongxs0905@163.com
  • 基金资助:
    陕西省重点研发计划项目(2024GX-YBXM-278)

Fast prediction method for complex assembly line production cycle based on XGBoost model

TANG Wenbin, DONG Xiaosai, RONG Yuxiang, LI Yadong   

  1. School of Mechanical & Electrical Engineering,Xi’an Polytechnic University,Xi’an 710600,China
  • Received:2024-08-28 Online:2025-08-18 Published:2025-09-09

摘要: 针对复杂装配线资源配置频繁扰动而引起的生产节拍评估需求,建立基于XGBoost模型的复杂装配线生产节拍快速预测方法。在仿真数据样本获取的基础上,将处理好的数据集输入XGBoost模型进行训练,利用XGBoost模型内置的特征重要性进行特征选择,完成数据降维;采用贝叶斯优化(Bayesian Optimization,BO)算法对XGBoost模型的超参数进行优化,将优化后的超参数赋给XGBoost模型进行生产节拍的预测,提升模型的性能表现。以某型飞机装配线为例,对所提方法进行了验证,在模型优选方面,相比基于贝叶斯优化的LSBoost模型和随机森林(Random Forest,RF)模型,BO-XGBoost 模型均展现出了更优越的性能;在超参数优化方面,相比基于传统遗传算法优化的XGBoost模型,BO-XGBoost 模型测试集的相关系数R2=0.944,均方根误差为1.71,能够精确地预测生产节拍,从而提升系统实时分析、动态优化与决策能力。

关键词: 生产节拍, 贝叶斯优化, 性能预测, XGBoost模型, 机器学习

Abstract: To address the need for evaluating production cycles in complex assembly lines with frequent resource allocation disruptions,an XGBoost model-based fast prediction method for complex assembly line production cycle has been developed. This method trained an XGBoost model using a dataset derived from simulation data,applying XGBoost′s built-in feature importance for feature selection and dimensionality reduction. Bayesian Optimization (BO) algorithm was used to refine the XGBoost model′s hyperparameters,the optimized hyperparameters were then assigned to the XGBoost model for predicting production cycles,enhancing prediction performance.Validation on an aircraft assembly line demonstrates that the BO-XGBoost model outperforms LSBoost and Random Forest (RF) models optimized with Bayesian methods.Furthermore,compared to an XGBoost model optimized with traditional genetic algorithms,the BO-XGBoost model achieves a coefficient of determination (R2) of 0.944 and a Root Mean Square Error (RMSE) of 1.71,providing accurate predictions and improving real-time analysis,dynamic optimization,and decision-making capabilities.

Key words: production cycle, Bayesian Optimization(BO), performance prediction, XGBoost model, machine learning

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn