现代制造工程 ›› 2025, Vol. 540 ›› Issue (9): 80-89.doi: 10.16731/j.cnki.1671-3133.2025.09.011

• 车辆工程制造技术 • 上一篇    下一篇

分布式驱动电动车辆横向稳定性控制策略研究

熊斯凯1, 吴湘柠2, 许恩永3, 陈义时2, 马育海1, 彭世康2, 韦锦1   

  1. 1 广西大学机械工程学院,南宁 530004;
    2 广西机械工业研究院有限责任公司,南宁 530007;
    3 东风柳州汽车有限公司,柳州 545000
  • 收稿日期:2024-11-07 出版日期:2025-09-18 发布日期:2025-09-23
  • 通讯作者: 陈义时,硕士,高级工程师,主要研究方向为智能制造技术。E-mail:290854559@qq.com。
  • 作者简介:熊斯凯,硕士研究生,主要研究方向为车辆稳定性控制。E-mail:2464657151@qq.com。
  • 基金资助:
    国家自然科学基金项目(52365001);广西科技重大专项项目(桂科AA23023011,桂科AA23062040);广西大学生创新创业训练项目(202410593008)

Research on lateral stability control strategies for electric vehicles with distributed drive

XIONG Sikai1, WU Xiangning2, XU Enyong3, CHEN Yishi2, MA Yuhai1, PENG Shikang2, WEI Jin1   

  1. 1 College of Mechanical Engineering,Guangxi University,Nanning 530004,China;
    2 Guangxi Research Institute Mechanical Industry Co.,Ltd.,Nanning 530007,China;
    3 Dongfeng Liuzhou Motor Co.,Ltd.,Liuzhou 545000,China
  • Received:2024-11-07 Online:2025-09-18 Published:2025-09-23

摘要: 针对分布式驱动电动车辆在复杂工况下的横向稳定性问题,提出了一种基于非奇异快速终端滑模控制的横向稳定性分层控制策略。首先,建立了二自由度车辆参考模型,以获得期望横摆角速度和期望质心侧偏角;其次,采用分层控制,上层控制器以期望横摆角速度和期望质心侧偏角为控制目标设计了一种基于非奇异快速终端滑模的直接横摆力矩控制器,并利用灰狼优化算法对该控制器参数进行全局最优求解,以提高系统的动态性能并保证较强的鲁棒性;然后,基于多重约束条件,利用二次规划法设计了下层控制器,将力矩优化分配给各个车轮;最后,为验证控制策略的有效性,在Simulink仿真平台上以正弦转角工况和双移线工况对横向稳定性分层控制策略进行仿真实验。结果表明:横向稳定性分层控制策略可以实现车辆横摆角速度和质心侧偏角的精确跟随,在正弦转角工况和双移线工况下车辆横摆角速度的超调量分别优化了19 %和22 %,车辆的质心侧偏角超调量分别优化了52 %和67 %,可以对复杂工况下车辆的横向稳定性进行有效控制,满足车辆稳定性控制要求。

关键词: 分布式驱动电动车辆, 非奇异快速终端滑模, 灰狼优化算法, 力矩优化分配

Abstract: A hierarchical control strategy for lateral stability based on nonsingular fast terminal sliding mode control is proposed to address the lateral stability problem of distributed-drive electric vehicles under complex working conditions. Firstly, the two-degree-of-freedom reference model of the vehicle is established to obtain the desired yaw rate and the desired side slip angle. Secondly, the upper controller designs a direct yaw-moment control strategy based on nonsingular fast terminal sliding mode control with the desired yaw rate and desired side slip angle as the control objectives, and uses grey wolf optimization algorithm to solve the global optimum of the controller parameters in order to improve the dynamic performance of the system and to ensure strong robustness. Then, based on multiple constraint conditions, a lower-level controller is designed using the quadratic programming method to optimize the torque distribution to each wheel. Finally, in order to verify the effectiveness of the control strategy, simulation experiments on the lateral stability hierarchical control strategy are conducted on the Simulink simulation platform under the sinusoidal rotation angle condition and the double shift line condition. The results indicate that the control strategy proposed in this study can achieve precise tracking of the vehicle′s yaw rate and sideslip angle. Under both sinusoidal steering and double lane change conditions, the overshoot of the yaw rate is optimized by 19 % and 22 %, respectively, while the overshoot of the sideslip angle is optimized by 52 % and 67 %, respectively. This demonstrates that the strategy can effectively control the lateral stability of the vehicle under complex driving conditions, meeting the requirements for vehicle stability control.

Key words: distributed-drive electric vehicle, nonsingular fast terminal sliding mode, grey wolf optimization algorithm, torque distribution

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn