[1] FAN K, ZHAI Y, LI X, et al. Review and classification of hybrid shop scheduling[J]. Production Engineering: Research and Development, 2018,12(5):597-609. [2] 张斯琪, 倪静. 混合鲸鱼算法在柔性作业车间系统中的应用[J]. 系统科学学报, 2020,28(1):131-136. [3] 方伟光, 郭宇, 黄少华, 等.大数据驱动的离散制造车间生产过程智能管控方法研究[J]. 机械工程学报,2021,57(20):277-291. [4] 吴秀丽, 孙琳. 智能制造系统基于数据驱动的车间实时调度[J]. 控制与决策, 2020,35(3):523-535. [5] 郑堃, 练志伟, 顾新艳, 等.应用改进两点交叉算子的改进自适应遗传算法求解不相关并行机混合流水车间调度问题[J]. 中国机械工程, 2023,34(14):1647-1658. [6] 鲁建厦,金敬豪,赵文彬,等.基于候鸟算法的批量流混合装配流水车间调度[J]. 浙江大学学报(工学版), 2022,56(11):2135-2144. [7] TIRKOLAEE E B,GOLI A,WEBER G W. Fuzzy Mathematical Programming and Self-Adaptive Artificial Fish Swarm Algorithm for Just-in-Time Energy-Aware Flow Shop Scheduling Problem with Outsourcing Option[J]. IEEE Transactions on Fuzzy Systems, 2020,28(11):2772-2783. [8] 钟敬伟,石宇强. 基于DQN的智能工厂作业车间调度[J].现代制造工程,2021(9):17-23,93. [9] ZHANG Y,ZHU H,TANG D,et al. Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems[J/OL]. Robotics Computer-Integrated Manufacturing,2022,78.https://doi.org/10.1016/j.rcim.2022.102412. [10] 王艳红, 尹涛, 谭园园, 等. 基于规则与Q学习的作业车间动态调度算法[J/OL]. 计算机集成制造系统,2023:1-17.http://kns.cnki.net/kcms/detail/11.5946.TP.20230506.1406.002.html. [11] WANG J,HE J,ZHANG J,et al. A Reinforcement Learning Method to Optimize the priority of Product for Scheduling the Large-scale Complex Manufacturing Systems[C]//48th International Conference on Computers & Industrial Engineering(CIE48). Auckland:[s.n.],2018:2-5. [12] LIU C L,Chang C C,Tseng C J. Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems[J].IEEE Access,2020,8:71752-71762. [13] YANG S,XU Z,WANG J. Intelligent Decision-Making of Scheduling for Dynamic Permutation Flow shop via Deep Reinforcement Learning[J]. Sensors, 2021,21(3):1019. [14] 余斌煌. 柔性流水车间调度问题综述[J]. 现代制造工程, 2022(9):154-162,71. [15] 李新宇,黄江平,李嘉航,等. 智能车间动态调度的研究与发展趋势分析[J].中国科学:技术科学,2023,53(7):1016-1030. [16] BAKIRLI Gzde, BRANT Derya. DTreeSim:A new appro-ach to compute decision tree similarity using re-mining[J]. Turkish Journal of Electrical Engineering & Computer Sciences,2017,25(1):108-125. [17] SHAO W,SHAO Z,PI D. Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem[J].Expert Systems with Applications,2021,183:115453. |