[1] LONG Tengfei,LI Yuan,CHEN Jun.Productivity prediction in aircraft final assembly lines:Comparisons and insights in different productivity ranges[J].Journal of Manufacturing Systems,2022,62:377-389. [2] 刘晓平,唐益明,郑利平.复杂系统与复杂系统仿真研究综述[J].系统仿真学报,2008,20(23):6303-6315. [3] JIA Z,ZHAO K,ZHANG Y,et al.Real-time performance evaluation and improvement of assembly systems with Bernoulli machines and finite production runs[J].International Journal of Production Research,2019,57(18):5749-5766. [4] COROMINAS A,FERRER L,PASTOR R.Assembly line balancing:general resource-constrained case[J].International Journal of Production Research,2011,49(12):3527-3542. [5] LIU P,ZHANG Q,PANNEK J.Capacity adjustment of job shop manufacturing systems with RMTs[C]//International Conference on Software.Chengdu:IEEE,2016:310-315. [6] 康宁轩.若干类生产系统性能研究:建模分析与改善[D].北京:清华大学,2016. [7] 闫飞,甘斌,陈招迪,等.离散事件仿真中实体被动式空间感知交互机制设计[J].系统仿真学报,2021,33(9):2234-2242. [8] JAMIL M,RAZALI M N.Simulation of Assembly Line Balancing in Automotive Component Manufacturing[J].IOP Conference Series:Materials Science and Engineering,2016,114(1):012049. [9] 刘闽东,吴龙军,汤明超,等.项目型制造过程信息流集成建模仿真研究[J].系统仿真学报,2022,34(3):555-563. [10] 付建林,姜良奎,林蓝,等.基于离散事件仿真的FMS生产策略优化[J].现代制造工程,2020(8):27-31. [11] YANG S L,XU Z G,WANG J Y.Modelling and Production Configuration Optimization for an Assembly Shop[J].International Journal of Simulation Modeling,2019,18(2):366-377. [12] JEONG D,KIM D,CHOI T,et al.A Process-Based Modeling Method for Describing Production Processes of Ship Block Assembly Planning[J].Processes,2020,8(7):880. [13] CHING S N,MEERKOV S M,ZHANG L.Assembly systems with non-exponential machines:Throughput and bottlenecks[J].Nonlinear Analysis Theory Methods & Applications,2008,69(3):911-917. [14] 刘娟,庄存波,刘检华,等.基于数字孪生的生产车间运行状态在线预测[J].计算机集成制造系统,2021,27(2):467-477. [15] 蒋昌健,樊虎,罗陶,等.面向飞机装配批架次完工时间的仿真预测方法[J].系统仿真学报,2024,36(6):1404-1413. [16] RUSCHEL E,LOURES E,SANTOS E,et al.Performance analysis and time prediction in manufacturing systems[J].Computers & Industrial Engineering,2020,151(4):1-15. [17] SUBRAMANIYAN M,SKOOGH A,SALMONSSON H,et al.A data-driven algorithm to predict throughput bottlenecks in a production system based on active periods of the machines[J].Computers & Industrial Engineering,2018,125:533-544. [18] SERKAN A,KORAY A.Predictive Maintenance System for Production Lines in Manufacturing:A Machine Learning Approach Using IoT Data in Real-Time[J].Expert Systems with Applications,2021,173(6):114598. [19] 张翔宇,李想,王伟,等.数据驱动的加工产线生产周期预测研究[J].组合机床与自动化加工技术,2024(3):182-186. [20] FORRESTER I A,KEANE J A.Recent advances in surrogate-based optimization[J].Progress in Aerospace Sciences,2008,45(1):50-79. [21] CHEN T,GUESTRIN C.Xgboost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data mining.San Francisco:ACM,2016:785-794. [22] 梁鸿,王庆玮,张千,等.小目标检测技术研究综述[J].计算机工程与应用,2021,57(1):17-28. [23] INJADAT M N,SALO F,NASSIF A B,et al.Bayesian optimization with machine learning algorithms towards anomaly detection[C]//2018 IEEE Global Communications Conference (GLOBECOM).Abu Dhabi:IEEE,2018:1-6. [24] 徐廷.基于Simio的产品设计过程重叠模式仿真优化研究[D].济南:山东大学,2016. |