[1] BRUCKER P, SCHLIE R. Job-shop scheduling with multi-purpose machines[J]. Computing, 1990, 45(4): 369-375. [2] PEZZELLA F, MORGANTI G, CIASCHETTI G. A genetic algorithm for the Flexible Job-shop Scheduling Problem[J]. Computers & Operations Research, 2008, 35(10): 3202-3212. [3] LIU Z, WANG J, ZHANG C, et al. A hybrid genetic-particle swarm algorithm based on multilevel neighbourhood structure for flexible job shop scheduling problem[J]. Computers & Operations Research, 2021, 135: 105431. [4] WANG Z, HE M, WU J, et al. An improved MOEA/D for low-carbon many-objective flexible job shop scheduling problem[J]. Computers & Industrial Engineering, 2024, 188: 109926. [5] 姜一啸, 吉卫喜, 何鑫,等基于改进非支配排序遗传算法的多目标柔性作业车间低碳调度[J]. 中国机械工程, 2022, 33(21): 2564-2577. [6] SENG D, LI J, FANG X, et al. Low-Carbon Flexible Job-Shop Scheduling Based on Improved Nondominated Sorting Genetic Algorithm-Ⅱ[J]. International Journal of Simula-tion Modelling, 2018, 17: 712-723. [7] MENG L, ZHANG C, ZHANG B, et al. MILP modeling and optimization of multi-objective flexible job shop scheduling problem with controllable processing times[J]. Swarm and Evolutionary Computation, 2023, 82: 101374. [8] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. [9] HAN B A, YANG J J. Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN[J]. IEEE Access, 2020, 8: 186474-186495. [10] LEI K, GUO P, ZHAO W, et al. A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem[J]. Expert Systems with Applications, 2022, 205: 117796. [11] CHEN R, YANG B, LI S, et al. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem[J]. Computers & Industrial Engineering, 2020, 149: 106778. [12] 李健, 李洹坤, 何鹏博,等.协同智能体强化学习算法的柔性作业车间调度方法研究[J]. 系统仿真学报,2024,36(11):2699-2711. [13] 张凯, 毕利, 焦小刚. 集成强化学习算法的柔性作业车间调度问题研究[J]. 中国机械工程, 2023, 34(2): 201-207. [14] SONG W, CHEN X, LI Q, et al. Flexible Job-Shop Scheduling via Graph Neural Network and Deep Reinforcement Learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 1600-1610. [15] LI R, GONG W, LU C. A reinforcement learning based RMOEA/D for bi-objective fuzzy flexible job shop scheduling[J]. Expert Systems with Applications, 2022, 203: 117380. [16] BRANDIMARTE P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of Operations Research, 1993, 41(3): 157-183. [17] 唐亮, 程峰, 吉卫喜,等. 改进ICA求解柔性作业车间插单重调度问题[J]. 计算机工程与应用, 2023, 59(21): 303-311. [18] TIAN Y, XIANG X, ZHANG X, et al. Sampling Reference Points on the Pareto Fronts of Benchmark Multi-Objective Optimization Problems[M].[S.l.]:[s.n.], 2018. [19] SCHOTT J R. Fault tolerant design using single and multicriteria genetic algorithm optimization[D]. Massachusetts: Massachusetts Institute of Technology,1995. [20] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271. |