[1] 白清顺,张亚博,王永旭,等.微裂纹缺陷对CVD金刚石涂层微刀具损伤失效的影响研究[J]. 表面技术,2021,50(2):355-362. [2] 张杨,高兴宇,党艳阳,等.基于三维图像处理的车刀磨损缺陷检测方法研究[J]. 机床与液压,2023,51(24):43-47[2024-07-10]. [3] 何钢,朱峰,邹华涛,等.基于改进Frangi滤波的芯片表面缺陷检测算法[J/OL]. 计算机集成制造系统:1-14[2024-07-10]. https://doi.org/10.13196/j.cims.2023.0397. [4] 宿磊,王立建,祁阳,等.基于IADSA深度迁移网络的金属表面缺陷检测[J]. 机械工程学报,2023(24):59. [5] SU B,CHEN H Y,CHEN P,et al.Deep Learning-Based Solar-Cell Manufacturing Defect Detection With Complementary Attention Network[J]. IEEE Transactions on Industrial Informatics,2020(99):1. [6] ZHOU Y,JI A,ZHANG L.Sewer defect detection from 3D point clouds using a transformer-based deep learning model[J]. Automation in Construction,2022(4):136. [7] TANG W,YANG Q,XIONG K,et al.Deep learning based automatic defect identification of photovoltaic module using electroluminescence images[J]. Solar Energy,2020,201:453-460. [8] DAVARI N,AKBARIZADEH G,MASHHOUR E,et al.Corona Detection and Power Equipment Classification Based on GoogleNet-AlexNet:An Accurate and Intelligent Defect Detection Model Based on Deep Learning for Power Distribution Lines[J]. IEEE Transactions on Power Delivery,2022,37(8):2766-2774. [9] XUE W, ZHAO C, FU W, et al.Micro Vision-based Sharpening Quality Detection of Diamond Tools[J]. Intelligent Robotics and Applications,2022,2835(13458):245-252. [10] ZHAO C,XUE W,FU W,et al.Defect Sample Image Generation Method Based on GANs in Diamond Tool Defect Detection[J]. IEEE Transactions on Instrumentation and Measurement,2023(72):1-9. [11] 刘浩,陈再良,王善翔.基于改进YOLOv3算法的刀具表面缺陷检测[J]. 组合机床与自动化加工技术,2021(11):87-90. [12] 姜金涛,丁坤,王志花,等.基于改进嵌入向量相似性的织物异常检测方法[J]. 毛纺科技,2023,51(6):73-80. [13] TSAI D M,JEN P H.Autoencoder-based anomaly detection for surface defect inspection[J]. Advanced Engineering Informatics,2021(48):101272. [14] CHOW J K,SU Z,WU J,et al.Anomaly detection of defects on concrete structures with the convolutional autoencoder[J]. Advanced Engineering Informatics,2020,45(3):101105. [15] KIMURA M,YANAGIHARA T.Semi-supervised Anomaly Detection Using GANs for Visual Inspection in Noisy Training Data[C]//Computer Vision-ACCV 2018 Workshops:14th Asian Conference on Computer Vision.[S.l.] :Springer International Publishing,2019:373-385. [16] RIBEIROM,LAZZARETTI A,LOPES H.A study of deep convolutional auto-encoders for anomaly detection in videos[J]. Pattern Recognition Letters,2017,105:13-22. [17] CHAABI M,HAMLICH M,GAROUANI M.Product defect detection based on convolutional autoencoder and one-class classification[J]. IAES International Journal of Artificial Intelligence,2023,12(2):912-920. [18] SALEHI M,SADJADI N,BASELIZADEH S,et al.Multiresolution Knowledge Distillation for Anomaly Detection[C]//Computer Vision and Pattern Recognition.[S.l.] :IEEE,2021. [19] DEFARD T,SETKOV A,LPESCH A,et al.PaDiM:A Patch Distribution Modeling Framework for Anomaly Detection and Localization[C]//International Conference on Pattern Recognition.Cham:Springer International Publishing,2021:475-489. [20] HAN K,WANG Y,CHEN H,et al.A Survey on Vision Transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45:87-110. [21] CARION N,MASSA F,SYNNAEVE G,et al.End-to-End Object Detection with Transformers[C]//European conference on computer vision.Cham:Springer International Publishing,2020:213-229. [22] YANG F,YANG H,FU J,et al.Learning Texture Transformer Network for Image Super-Resolution[C]//CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE,2020:5791-5800. [23] CHEN L,YOU Z,ZHANG N,et al.UTRAD:Anomaly detection and localization with U-Transformer[J]. Neural Networks,2022,147:53-62. [24] 张玥,陈锡伟,陈梦丹,等.基于对比学习生成对抗网络的无监督工业品表面异常检测[J]. 电子测量与仪器学报,2023,37(10):193-201. [25] GUDOVSKIY D,ISHIZAKA S,KOZUKA K.CFLOW-AD:Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows[C]//CVF Winter confer-ence on Applications of Computer Vision (WACV).Piscata-way:IEEE,2022:98-107. [26] ROTH K,PEMULA L,ZEPEDA J,et al.Towards Total Recall in Industrial Anomaly Detection[C]//CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE,2022:14318-14328. |