现代制造工程 ›› 2024, Vol. 523 ›› Issue (4): 33-42.doi: 10.16731/j.cnki.1671-3133.2024.04.005

• 先进制造系统管理运作 • 上一篇    下一篇

基于海鸥优化算法的分布式柔性车间调度研究

孙鸿羽1, 吉卫喜1,2, 李威1, 刘凯1   

  1. 1 江南大学机械工程学院,无锡 214122;
    2 江苏省食品制造装备重点实验室,无锡 214122
  • 收稿日期:2023-07-18 出版日期:2024-04-18 发布日期:2024-05-31
  • 作者简介:孙鸿羽,硕士研究生,主要研究方向为智能制造。吉卫喜,教授,博士生导师,主要研究方向为智能制造技术与集成制造技术、数字化制造技术。E-mail:shy3915251199@163.com

Research on distributed and flexible job-shop scheduling based on seagull optimization algorithm

SUN Hongyu1, JI Weixi1,2, LI Wei1, LIU Kai1   

  1. 1 School of Mechanical Engineering,Jiangnan University,Wuxi 214122,China;
    2 Jiangsu Provincial Key Laboratory of Food Manufacturing Equipment,Wuxi 214122,China
  • Received:2023-07-18 Online:2024-04-18 Published:2024-05-31

摘要: 基于分布式柔性作业车间问题特点,构建了以最小化最大完工时间、工厂总能耗和设备总负载为目标函数的数学模型,并对3个目标函数采用线性加权和法进行归一化。在传统的海鸥优化算法基础上,改进了自适应附加变量更新策略,提高算法后期的局部寻优能力和收敛精度。融合麻雀算法中的飞行机制,扩大个体局部寻优范围,进一步提高寻优精度。引入针对关键工厂的变邻域搜索算法,拓展了邻域搜索范围,增强了算法的局部搜索能力。通过标准算例和工厂实际算例的验证,证明了改进海鸥优化算法(Improve Seagull Optimization Algorithm,ISOA)在求解多目标分布式柔性作业车间问题上的有效性和可行性。

关键词: 分布式柔性作业车间, 多目标优化, 变邻域搜索, 自适应附加变量

Abstract: Based on the characteristics of distributed flexible job-shop problems,a mathematical model was constructed with the objective functions of minimizing completion time,factory energy consumption,and equipment load,and the three objectives were normalized using linear weighted sum method.On the basis of the traditional Seagull Optimization Algorithm (SOA),an adaptive additional variable update strategy has been improved to improve the local optimization ability and convergence accuracy of the algorithm in the later stage. The flight mechanism in the sparrow algorithm was integrated to expand the local optimization range of individuals,and further improve the optimization accuracy.Introducing a variable neighborhood search algorithm for key factories has expanded the neighborhood search range and enhanced the local search ability of the Seagull algorithm. The effectiveness and feasibility of ISOA in solving multi-objective distributed and flexible job-shop problems were verified through standard and actual factory examples.

Key words: distributed and flexible job-shop, multi-objective optimization, variable neighborhood search, adaptive additional variable

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn