现代制造工程 ›› 2025, Vol. 536 ›› Issue (5): 135-143.doi: 10.16731/j.cnki.1671-3133.2025.05.017

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

变工况下基于IPNCC-MCSKNet的滚动轴承故障声纹识别方法*

何新荣1,2, 邵峰1, 郭嘉1, 杜小泽2   

  1. 1 国能南京电力试验研究有限公司,南京 210023;
    2 华北电力大学,北京 102206
  • 收稿日期:2024-09-11 出版日期:2025-05-18 发布日期:2025-05-30
  • 作者简介:何新荣,博士研究生,高级工程师,主要研究方向为火电厂主辅机设备故障诊断和测控技术研发。E-mail:12011470@ceic.com
  • 基金资助:
    *国家能源集团科技项目(GJNY-23-68)

IPNCC-MCSKNet-based voiceprint recognition of rolling bearing faults under variable operating conditions

HE Xinrong1,2, SHAO Feng1, GUO Jia1, DU Xiaoze2   

  1. 1 China Energy Nanjing Electric Power Test & Research Co.,Ltd.,Nanjing 210023,China;
    2 North China Electric Power University,Beijing 102206,China
  • Received:2024-09-11 Online:2025-05-18 Published:2025-05-30

摘要: 针对电厂设备运行工况复杂多变导致滚动轴承故障模式难以识别的问题,提出了一种基于IPNCC-MCSKNet的滚动轴承故障声纹识别方法,实现变转速工况下滚动轴承故障的高效识别。首先,对采集到的轴承声纹信号进行预处理、降噪、特征差分整合,形成改进的功率归一化倒谱系数(Improved Power-Normalized Cepstral Coefficients,IPNCC);然后,提取包含IPNCC的多种声纹特征构建多通道输入特征,利用选择性核(Selective Kernel,SK)卷积模块能够自适应调整卷积核大小的机制,建立多通道选择性核卷积网络模型(Multi-Channels Selective Kernel Network,MCSKNet);最后,对滚动轴承不同故障形式样本进行声纹建模与故障识别。试验表明,所提模型在多种变转速工况的诊断任务中平均诊断准确率达到95.99 %,相比其他深度学习模型提升了13.98 %~26.55 %,模型鲁棒性更强。研究结果可为滚动轴承声纹特征提取及故障诊断提供新思路。

关键词: 滚动轴承, 声纹建模, 故障识别, IPNCC, MCSKNet, 选择性核卷积

Abstract: To solve the problem of difficult recognition of rolling bearing failure modes due to the complex and variable operating conditions of power plant equipment,a rolling bearing fault acoustic pattern recognition method based on IPNCC-MCSKNet was proposed to realize the efficient recognition of rolling bearing faults under the operating conditions of variable rotational speed. Firstly,the acquired bearing acoustic signals were preprocessed,noise reduced,and feature difference integrated to form Improved Power-Normalized Cepstral Coefficients (IPNCC). Then the various voiceprint features including IPNCC were extracted to construct multi-channel input features,and the mechanism that the Selective Kernel (SK) convolution module can adaptively adjust the size of the convolution kernel was utilized to establish a multi-channel selective kernel network model (MCSKNet). Finally,voiceprint pattern modeling and fault recognition were carried out on different fault forms of rolling bearing samples. The experimental results showed that the proposed model achieved an average diagnostic accuracy of 95.99 % in the diagnostic task under multiple variable speed conditions,which was 13.98 % to 26.55 % higher than other deep learning models,and the model was more robust. The results can provide new ideas for rolling bearing acoustic feature extraction and fault diagnosis.

Key words: rolling bearings, voiceprint modeling, fault recognition, IPNCC, MCSKNet, selective kernel convolution

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn