现代制造工程 ›› 2025, Vol. 538 ›› Issue (7): 129-138.doi: 10.16731/j.cnki.1671-3133.2025.07.016

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

基于改进SDP和FasterNet-GCAM的滚动轴承故障诊断

陈家芳, 唐湛恒, 周健   

  1. 广西中烟工业有限责任公司,南宁 530001
  • 收稿日期:2024-09-30 出版日期:2025-07-18 发布日期:2025-08-04
  • 通讯作者: 周健,工程师,主要研究方向为机械设备可靠性。E-mail:765384968@qq.com
  • 作者简介:陈家芳,硕士研究生,主要研究方向为装备智能故障诊断及剩余寿命预测。E-mail:chenjf97@yeah.net; 唐湛恒,工程师,主要研究方向为机械设备可靠性。

Fault diagnosis of rolling bearings based on improved SDP and FasterNet-GCAM

CHEN Jiafang, TANG Zhanheng, ZHOU Jian   

  1. Guangxi China Tobacco Industry Co.,Ltd.,Nanning 530001,China
  • Received:2024-09-30 Online:2025-07-18 Published:2025-08-04

摘要: 对滚动轴承进行故障诊断关乎设备运行安全及稳定可靠性。使用传统卷积神经网络进行故障诊断,模型运算量过大,且易出现过拟合现象从而导致诊断精度不高,端到端模型存在可信度不高等问题。鉴于此,提出一种基于改进对称极坐标(Symmetrized Dot Pattern,SDP)法和FasterNet-GCAM网络的滚动轴承故障诊断方法。首先,将一维振动信号经过小波阈值降噪处理,再输入经皮尔逊图像相关系数法优化的SDP法生成SDP图像,并通过在FasterNet网络中加入部分卷积(partial convolution)思想,构建成改进的SDP-FasterNet模型进行进一步的特征提取,并完成滚动轴承不同故障的分类诊断。为了验证模型在图像识别过程中决策的可信度,将梯度加权类激活映射(Gradient-weighted Class Activation Mapping,Grad-CAM)与FasterNet网络相结合,突出SDP图像与决策相关的重要部分。试验结果表明,所提方法相比于其他方法具有更快的收敛速度和更强的鲁棒性,且诊断识别精度达到了99.20 %,并提高了诊断过程中的可解释性及可信度,为故障诊断领域提供了具备良好可行性和鲁棒性的轻量化诊断模型。

关键词: 滚动轴承, 故障诊断, FasterNet网络, 部分卷积, 梯度加权类激活映射, 对称极坐标法

Abstract: Fault diagnosis of rolling bearings is related to the safety and stability of equipment operation.Traditional convolutional neural network is used to diagnosis malfunctions,whose model arithmetic is too large and prone to overfitting phenomenon.It caused some problems such as poor diagnostic accuracy,end-to-end modeling with poor trustworthiness and so on. In view of this,it was supposed to propose a rolling bearing fault diagnosis method based on improved Symmetrized Dot Pattern (SDP) and FasterNet-GCAM network. Firstly,the one-dimensional vibration signals were processed by wavelet thresholding noise reduction,and then fed into the SDP method optimized by the Pearson′s image correlation coefficient method to generate the SDP images. FasterNet network by adding the idea of partial convolution was constructed into an improved SDP-FasterNet model for further feature extraction to complete the classification and diagnosis of different faults in the bearing. Lastly,in order to verify the credibility of the model′s decision-making in the process of image recognition,Gradient-weighted Class Activation Mapping (Grad-CAM) was combined with the FasterNet network,which can highlight the important parts of the SDP graph which are relevant to decision making. The experimental results show that the proposed method has faster convergence speed and stronger robustness than other methods. And the results′ diagnostic recognition accuracy had achieved 99.20 %. It improved the interpretability and credibility in the diagnostic process,which provides a diagnostic model with good feasibility and robustness in the field of fault diagnosis.

Key words: rolling bearing, fault diagnosis, FasterNet network, partial convolution, gradient-weighted class activation mapping, Symmetrized Dot Pattern (SDP)

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn