[1] FLAMMIA G.Application service providers:challenges and opportunities[J].Intelligent Systems IEEE,2001,16(1):22-23. [2] FAN Yushun,ZHAO Dazhe,ZHANG Liqin,et al.Manufacturing grid:needs,concept,and architecture[C]//International Workshop on Grid and Cooperative Computing.New York,NY:Springer-Verlag Berlin Heidelberg,2004:653-656. [3] SHIMOMURA Y,KIMITA K,TATEYAMA T,et al.A method for human resource evaluation to realise high-quality PSSs[J].CIRP Annals-Manufacturing Technology,2013,62(1):471-474. [4] 李伯虎,张霖,王时龙,等.云制造——面向服务的网络化制造新模式[J].计算机集成制造系统,2010,16(1):1-7. [5] DING S,GUO Z,WANG H,et al.Multistage cloud-service matching and optimization based on hierarchical decomposition of design tasks[J].Machines,2022,10(9):775-812. [6] JIAO H,ZHANG J,LI J,et al.Research on cloud manufacturing service discovery based on latent semantic preference about OWL-S[J]. International Journal of Computer Integrated Manufacturing,2015,30(4/5):433-441. [7] 杜胜浩,钱晓捷.基于刻面与本体标识的语义Web服务发现方法[J].计算机工程,2018,44(8):224-236. [8] 鲁城华,寇纪淞.基于概念间双向语义和多重关系的Web服务发现[J].模式识别与人工智能,2018,31(2):101-113. [9] 尹超,夏卿,黎振武.基于OWL-S的云制造服务语义匹配方法[J].计算机集成制造系统,2012,18(7):1494-1502. [10] 庄瑞莲.面向机械加工的云制造服务平台关键技术研究[J].现代制造技术与装备,2017(11):82-84. [11] 张严凯,周井泉,李强.基于动态参数蚁群算法的云制造服务组合[J].计算机技术与发展,2018,28(1):127-130. [12] LI Y,YAO X,LIU M.Cloud manufacturing service composition optimization with improved genetic algorithm[J].Mathematical Problems in Engineering,2019(1):1-19. [13] 廖文利,魏乐,王宇.基于改进北极熊算法的制造云服务组合优化[J].计算机应用研究,2022,39(4):1099-1104. [14] BI X,YU D,LIU J,et al.A preference-based multi-objective algorithm for optimal service composition selection in cloud manufacturing[J].International Journal of Computer Integrated Manufacturing,2020,33(8):751-768. [15] YANG W,YANG B,WANG S,et al.An improved grey wolf optimizer algorithm for energy-aware service composition in cloud manufacturing[J].The International Journal of Advanced Manufacturing Technology,2019,105(7/8):3079-3091. [16] XIANG F,HUY,YU Y,et al.QoS and energy consumption aware service composition and optimal-selection based on pareto group leader algorithm in cloud manufacturing system[J].Central European Journal of Operations Research,2014,22(4):663-685. [17] TAO F,FENG Y,ZHANG L,et al.CLPS-GA:A case library and pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling[J].Applied Soft Computing,2014(19):264-279. [18] JIA G,HAN G,JIANG J,et al.Dynamic adaptive replacement policy in shared last-level cache of DRAM/PCM hybrid memory for big data storage[J].IEEE Trans on Industrial Informatics,2017,13(4):1951-1960. [19] ZHENG H,FENG Y,TAN J.A hybrid energy-aware resource allocation approach in cloud manufacturing environment [J].IEEE Access,2017,2017(5):12648-12656. [20] 刘明周,王强,凌琳.基于分层任务网络的云制造任务分解方法[J].中国机械工程,2017,28(8):924-930. [21] 李贻婷.云制造环境下任务分解及资源配置的研究[D].南京:南京信息工程大学,2022. [22] 白东伟.基于语义的Web服务匹配与发现技术研究[D].北京:北京邮电大学,2007. [23] 陶飞.制造网格资源服务优化配置理论与应用研究[D].武汉:武汉理工大学,2008. [24] SONG Y,SHI S,LI J,et al.Directional skip-gram:explicitly distinguishing left and right context for word embeddings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 2 (Short Papers).United States:Association for Computational Linguistics,2018:175-180. [25] QUE Y,ZHONG W,CHEN H,et al.Improved adaptive immune genetic algorithm for optimal QoS-aware service composition selection in cloud manufacturing[J].The International Journal of Advanced Manufacturing Technology,2018,96(9/10/11/12):4455-4465. [26] EBERHART R,KENNEDY J.A new optimizer using particle swarm theory[C]//In Proceedings of the MHS’95:Sixth International Symposium on Micro Machine and Human Science.Nagoya:IEEE,1995:39-43. [27] KARABOGA D.An idea based on honey bee swarm for numerical optimization,Technical Report-TR06[R].The Republic of Türkiye:Erciyes University,2005. [28] SAMPSON R J.Adaptation in natural and artificial systems (John H.Holland)[J].SIAM Review,1976,18(3):529-530.
|