现代制造工程 ›› 2025, Vol. 535 ›› Issue (4): 25-35.doi: 10.16731/j.cnki.1671-3133.2025.04.003

• 数字化/网络化制造 • 上一篇    下一篇

一种基于改进蒲公英优化的云制造服务组合策略*

董靖宇, 郭银章   

  1. 太原科技大学群智计算与云计算实验室,太原 030024
  • 收稿日期:2024-05-13 出版日期:2025-04-18 发布日期:2025-05-08
  • 通讯作者: 郭银章,教授,博士,主要研究方向为群智计算与云计算、云制造与云安全。E-mail:jingyugo0714@163.com
  • 作者简介:董靖宇,硕士研究生,主要研究方向为云制造与云安全。
  • 基金资助:
    * 山西省中央引导地方科技发展资金项目(YDZJSX20231A044)

A cloud manufacturing service composition strategy based on improved dandelion optimizer algorithm

DONG Jingyu, GUO Yinzhang   

  1. Crowdsourcing and Cloud Computing Laboratory,Taiyuan University of Science and Technology,Taiyuan 030024,China
  • Received:2024-05-13 Online:2025-04-18 Published:2025-05-08

摘要: 针对云制造服务组合存在的能力需求匹配度低、多约束条件下组合优化困难及寻优效率低下等问题,给出了一种基于改进蒲公英优化(Dandelion Optimizer,DO)算法的服务组合优化方法。在分析了云制造能力供应商以及服务质量属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,使用一种基于改进DO算法的服务组合方法对服务组合问题进行求解,得到最优的服务组合方案。在DO算法改进方面,通过引入Tent混沌映射来提高种群粒子的多样性,采用反向学习机制以及引入计数器和变异的概念提高了算法收敛速度,避免了算法过早收敛。最后通过仿真实验与经典蒲公英优化算法以及服务组合相关文献中提出的改进粒子群算法、改进遗传算法、改进北极熊算法等算法对比分析,验证了所提算法在云制造服务组合优化中高效性和稳定性。

关键词: 云制造, 服务组合, 蒲公英优化算法, 混沌映射, 反向学习

Abstract: Given the low capability-demand alignment,the difficulty of optimizing combinations under multiple constraints,and the low efficiency in optimization,a service combination optimization method based on the improved Dandelion Optimizer (DO) algorithm is proposed for cloud manufacturing. After analyzing the capabilities of cloud manufacturing service providers and the quality attributes of services,the Analytic Hierarchy Process (AHP) is utilized to normalize and aggregate various attribu-tes. Subsequently,an improved DO algorithm is employed to solve the service combination problem and obtain the optimal service combination solution.In terms of improving the DO algorithm,diversity of population particles is enhanced by introducing the Tent chaotic mapping. Additionally,the convergence speed of the algorithm is improved by incorporating reverse learning mechanisms,counters,and mutation concepts,thus preventing premature convergence. Finally,through simulation experiments and comparative analysis with classical dandelion optimizer algorithm and other improved algorithms such as particle swarm optimization,genetic algorithm,and polar bear optimization proposed in relevant literature on service combination,the effectiveness and stability of the proposed algorithm in cloud manufacturing service combination optimization are verified.

Key words: cloud manufacturing, service composition, dandelion optimizer algorithm, chaotic mapping, reverse learning

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn