现代制造工程 ›› 2025, Vol. 537 ›› Issue (6): 67-72.doi: 10.16731/j.cnki.1671-3133.2025.06.007

• 机器人技术 • 上一篇    下一篇

基于改进粒子群算法的焊接机械臂轨迹规划方法*

景会成1,2, 张冰珂1, 张靖轩1,3, 郭明亮2, 孙晋超2   

  1. 1 华北理工大学电气工程学院,唐山 063210;
    2 唐山融创智能科技有限公司,唐山 063210;
    3 河北省矿山绿色智能开采技术创新中心,唐山 063210
  • 收稿日期:2024-09-02 出版日期:2025-06-18 发布日期:2025-07-16
  • 通讯作者: 张靖轩,博士,副教授,主要研究方向为复杂系统的故障诊断与可靠性评估、智能检测与数据挖掘。E-mail:jingxuan.zhang@ncst.edu.cn
  • 作者简介:景会成,硕士,副教授,硕士研究生导师,主要研究方向为机器人控制。
  • 基金资助:
    *河北省教育厅科学研究项目资助项目(CXY2024013)

Welding robot arm trajectory planning method based on improved particle swarm algorithm

JING Huicheng1,2, ZHANG Bingke1, ZHANG Jingxuan1,3, GUO Mingliang2, SUN Jinchao2   

  1. 1 College of Electrical Engineering,North China University of Science and Technology, Tangshan 063210,China;
    2 Tangshan Rongchuang Intelligent Technology Co.,Ltd.,Tangshan 063210,China;
    3 Green Intelligent Mining Technology Innovation Center of Hebei Province,Tangshan 063210,China
  • Received:2024-09-02 Online:2025-06-18 Published:2025-07-16

摘要: 为了提高焊接机械臂在不同障碍物环境中的工作效率,提出了一种多策略改进粒子群算法的避障轨迹规划方法。利用6次多项式函数对机械臂前3个关节进行插值规划,获取运动轨迹。动态调整粒子群优化算法的惯性权重和学习因子,平衡算法的全局和局部搜索能力;引入动态透镜成像反向学习策略,并融合重启策略和贪婪算法,提升算法跳出局部最优的能力。以IRB120型机械臂为研究对象,通过MATLAB软件进行仿真。仿真结果表明,改进的粒子群算法在收敛速度和寻优精度上有显著的提升,运动轨迹平滑无突变。

关键词: 机械臂, 粒子群优化算法, 反向学习策略, 避障轨迹规划

Abstract: In order to improve the efficiency of welding robotic arm in different obstacle environments,a multi-strategy improved particle swarm algorithm for obstacle avoidance trajectory planning was proposed. The first three joints of the robotic arm were interpolated using a 6th degree polynomial function to obtain the motion trajectory. The inertia weights and learning factors of the particle swarm optimization algorithm were dynamically adjusted to balance the global and local search ability of the algorithm;the dynamic lens imaging reverse learning strategy was introduced,and the restart strategy and greedy algorithm were integrated to enhance the ability of the algorithm to jump out of the local optimum.The IRT120 robotic arm was taken as the research object and simulated by MATLAB software. The simulation results show that the improved particle swarm algorithm has significant improvements in convergence speed and optimization accuracy,and the motion trajectory is smooth without sudden changes.

Key words: robotic arm, particle swarm optimization algorithm, reverse learning strategy, obstacle avoidance trajectory planning

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn