现代制造工程 ›› 2025, Vol. 537 ›› Issue (6): 73-83.doi: 10.16731/j.cnki.1671-3133.2025.06.008

• 机器人技术 • 上一篇    下一篇

基于QP-ZNN的冗余度机械臂容错控制*

马黎1, 张迪2   

  1. 1 商丘职业技术学院软件学院,商丘 476100;
    2 郑州西亚斯学院计算机与软件工程学院,郑州 451150
  • 收稿日期:2024-06-25 出版日期:2025-06-18 发布日期:2025-07-16
  • 通讯作者: 张迪,硕士,副教授,主要研究方向为计算机软件与智能控制。E-mail:didiz82@126.com
  • 作者简介:马黎,硕士,副教授,主要研究方向为智能机器人与计算机应用。E-mail:malee83@126.com
  • 基金资助:
    *河南省科技攻关项目(212102210533)

Fault-tolerant control of redundant robotic manipulators based on QP-ZNN

MA Li1, ZHANG Di2   

  1. 1 School of Software,Shangqiu Polytechnic,Shangqiu 476100,China;
    2 School of Computer and Software Engineering,Sias University,Zhengzhou 451150,China
  • Received:2024-06-25 Online:2025-06-18 Published:2025-07-16

摘要: 针对存在关节转速约束条件的机械臂冗余度解析及轨迹容错控制问题,提出了一种基于二次规划(Quadratic Programming,QP)且内嵌性能约束的零化神经网络(Zeroing Neural Network,ZNN)控制架构。首先,在速度层构建了含有约束条件的机械臂冗余度解析模型(时变欠定线性系统);其次,引入一个非线性可逆映射,将受约束系统状态变量转换为无约束变量,同时,构造包含关节速度项与末端位置偏差项的系统误差形式,并通过非线性变换将规定的性能约束(机械臂末端跟踪误差上、下界)嵌入系统误差中,进而构建了用于机械臂冗余度解析的QP问题模型,提出了基于ZNN的QP问题求解架构;然后,结合凸分析及Lyapunov稳定性理论对所提出的控制架构进行了全局稳定性和收敛性分析;最后,针对KUKA LBR IIWA 14 R820机械臂轨迹容错控制问题,通过仿真分析和物理实验对所提控制架构进行了性能验证。仿真分析结果表明:对于机械臂有/无关节故障工况,即使存在机械臂末端初始位置误差,针对不同形式的期望轨迹,所提QP-ZNN求解架构均能控制机械臂末端轨迹跟踪误差收敛至10-5 m数量级,且内嵌性能约束能够大幅提升所提控制架构的性能;相较于文献中已有的经典ZNN架构与变参数ZNN架构,所提内嵌性能约束的QP-ZNN控制架构的控制精度提升明显。物理实验结果进一步表明:即使机械臂存在多关节故障,针对不同类型的期望轨迹,所提内嵌性能约束的QP-ZNN控制架构仍可以驱使机械臂末端轨迹跟踪误差收敛于10-4 m数量级。

关键词: 神经网络控制, 二次规划, 冗余度解析, 机械臂, 性能约束, 时变欠定线性系统, 容错控制

Abstract: Aiming at the problem of redundancy resolution and fault-tolerant trajectory control of robotic manipulators with joint rotational speed constraints,a Zeroing Neural Network (ZNN) control architecture based on Quadratic Programming (QP) embedded with performance constraints was proposed. Firstly,the resolution model of robotic manipulator redundancy with constraints (time-varying underdetermined linear system) was constructed in the velocity layer. Furthermore,a nonlinear reversible mapping was introduced to transform the constrained system state variables into unconstrained variables,and at the same time,a system error form including the joint velocity term and the end position deviation term was constructed,and the prescribed performance constraints (the upper and lower bounds of the end tracking error of robotic manipulator) were embedded into the system error through nonlinear transformation,and then a QP problem model for redundant resolution of robotic manipulator was constructed,together with a ZNN-based QP problem solving architecture proposed. Then,the global stability and convergence of the proposed control architecture were analyzed by combining convex optimization theory and Lyapunov stability theory. Finally,to solve the problem of fault-tolerant trajectory control of KUKA LBR IIWA 14 R820 robotic manipulator,the performance of the proposed control architecture was verified by simulation analysis and physical experiments. The simulation results show that the proposed QP-ZNN solution architecture can drive the trajectory tracking error of the robotic manipulator to converge to 10-5 m for different forms of expected trajectories,even if there is initial position deviation of the end-effector,and the embedded performance constraints can greatly improve the performance of the proposed control architecture. Compared with classical and varying parameter ZNN in the existing literature,the control accuracy of the proposed QP-ZNN control architecture with embedded performance constraints can be significantly improved. The results of physical experiments further show that the proposed QP-ZNN control architecture with embedded performance constraints can still drive the trajectory tracking error of the end-effector of the manipulator to converge to 10-4 m for different types of expected trajectories,even if there are multi-joint faults in the robotic manipulator.

Key words: neural network control, quadratic programming, redundancy resolution, robotic manipulators, performance constraints, time-varying underdetermined linear system, fault-tolerant control

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn