现代制造工程 ›› 2025, Vol. 537 ›› Issue (6): 84-91.doi: 10.16731/j.cnki.1671-3133.2025.06.009

• 机器人技术 • 上一篇    下一篇

基于混合遗传粒子群算法的机器人关节空间轨迹规划*

李建儒, 龚堰珏, 赵罘   

  1. 北京工商大学计算机与人工智能学院,北京 100048
  • 收稿日期:2024-06-22 出版日期:2025-06-18 发布日期:2025-07-16
  • 通讯作者: 龚堰珏,副教授,硕士生导师,研究方向为机械优化设计、机器人技术。E-mail:yjgong@th.btbu.edu.cn
  • 作者简介:李建儒,硕士研究生,研究方向为计算机辅助设计。E-mail:914085976@qq.com
  • 基金资助:
    *国家自然科学基金项目(51975006)

Joint space trajectory planning of robot based on hybrid genetic particle swarm optimization

LI Jianru, GONG Yanjue, ZHAO Fu   

  1. School of Computing and Artificial Intelligence,Beijing Technology and Business University, Beijing 100048,China
  • Received:2024-06-22 Online:2025-06-18 Published:2025-07-16

摘要: 为实现对矿用刮板的激光熔覆修复,针对保持激光熔覆机器人作业过程高效稳定的问题,根据机器人的运动学特性,研究了关节空间的轨迹规划方法,提出了一种混合遗传粒子群算法。该方法基于粒子群算法,通过构造自适应惯性权重和动态学习因子,引入遗传算法中的交叉和变异行为,使用3-5-3多项式插值法将轨迹拟合到机器人的关节空间中。将混合遗传粒子群算法、混沌粒子群算法和标准粒子群算法进行对比,获得最优插值时间后,在 MATLAB软件中进行仿真,各个关节的位置、速度、加速度随时间变化的过程保持在理想的连续性区间内,实现了关节空间中的时间最优运动规划,最优时间由标准粒子群算法的5.058 0 s减小到4.633 0 s,机械臂轨迹规划时间缩短了8.4 %,验证了所提算法在激光熔覆机器人修复矿用刮板的轨迹规划中的可行性。

关键词: 矿用刮板, 时间最优, 轨迹规划, 粒子群算法, 遗传算法, 机械臂

Abstract: In order to realise laser cladding repair of mining scrapers,for the problem of maintaining high efficiency and stability of laser cladding robots during operation,the trajectory planning method in the joint space was studied according to the kinematic characteristics of the robots,and a hybrid genetic particle swarm optimization algorithm was proposed. Based on the particle swarm optimization algorithm,the method introduced the crossover and mutation behaviours in the genetic algorithm by constructing adaptive inertia weights and dynamic learning factors,and fitted the trajectory into the joint space of the robot using 3-5-3 polynomial interpolation. The hybrid genetic particle swarm optimization algorithm,chaotic particle swarm optimization algorithm and standard particle swarm optimization algorithm were compared,and after obtaining the optimal interpolation time,simulation was carried out in MATLAB software,and the change process of position,velocity and acceleration of each joint over time was kept in the ideal continuity interval,which realised the time-optimal motion planning in the joint space,and the optimal time was reduced from 5.058 0 s of the standard particle swarm optimization algorithm to 4.633 0 s,and the robotic arm trajectory planning time was shortened by 8.4 %,which verified the feasibility of the proposed algorithm in the trajectory planning of the laser cladding robot for repairing the mining scraper.

Key words: mining scrape, time-optimal, trajectory planning, particle swarm optimization algorithm, genetic algorithm, robotic arm

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn