现代制造工程 ›› 2025, Vol. 537 ›› Issue (6): 11-21.doi: 10.16731/j.cnki.1671-3133.2025.06.002

• 先进制造系统管理运作 • 上一篇    下一篇

带AGV数量约束的柔性作业车间调度问题研究*

廖雪超1,2, 向桂宏1,2, 阮兵3, 田芮利3, 钟实4   

  1. 1 武汉科技大学计算机科学与技术学院,武汉 430065;
    2 智能信息处理与实时工业系统湖北省重点实验室,武汉 430065;
    3 中国汽车工业工程有限公司,天津 300113;
    4 武汉钢铁股份有限公司设备管理部技术室,武汉 430081
  • 收稿日期:2024-08-21 出版日期:2025-06-18 发布日期:2025-07-16
  • 通讯作者: 阮兵,本科,高级工程师,主要研究方向为计算机软件及计算机应用、自动化技术。
  • 作者简介:廖雪超,博士,副教授,主要研究方向为大数据和计算机应用。E-mail:liaoxuechao@wust.edu.cn; 向桂宏,硕士研究生,主要研究方向为智能优化调度。E-mail:2868307592@qq.com
  • 基金资助:
    *国家自然科学基金项目(62176191)

Research on flexible job-shop scheduling problem with AGV quantity constraints

LIAO Xuechao1,2, XIANG Guihong1,2, RUAN Bing3, TIAN Ruili3, ZHONG Shi4   

  1. 1 School of Computer Science and Technology,Wuhan University of Science and Technology, Wuhan 430065,China;
    2 Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430065,China;
    3 Automotive Engineering Co., Ltd.,Tianjin 300113,China;
    4 Technical Office of Equipment Management Department,Wuhan Iron and Steel Co., Ltd., Wuhan 430081,China
  • Received:2024-08-21 Online:2025-06-18 Published:2025-07-16

摘要: 在实际工业生产过程中,由于自动导引车(Automated Guided Vehicles,AGVs)资源有限,因此在柔性作业车间调度问题(Flexible Job-shop Scheduling Problem,FJSP)中考虑有限AGV数量约束(FJSP-AGV)的集成问题有重要的研究价值。传统的进化算法容易陷入局部最优,不适用于求解此类复杂程度较高的调度问题。针对以上难点,首先对FJSP-AGV集成问题建立数学模型;然后提出了基于启发式规则引导的改进遗传算法,算法针对不同编码段采用多种交叉、变异方式进化种群,同时在进化过程中作参数自适应调整,并通过启发式规则引导变异进行局部搜索,提高算法跳出局部最优的能力,从而实现系统最大完工时间的最小化。通过在两组中小规模数据集上与其他先进算法的对比分析可知,所提算法的整体求解效果最优。

关键词: 柔性作业车间调度, 自动导引车, 车辆调度, 遗传算法, 启发式规则

Abstract: In the actual industrial production process,due to the limited resources of Automate Guided Vehicles (AGVs), the integrated problem FJSP-AGV comsidering the constraint of alimited number of AGVs in the Flexible Job-shop Scheduling Problem (FJSP) has significant research value. Traditional evolutionary algorithms are easy to fall into local optimum and are not suitable for solving this scheduling problem with high complexity.In light of the aforementioned challenges, it initially established a mathematical model for FJSP-AGV and subsequently proposed an improved genetic algorithm guided by heuristic rules. The algorithm utilized various crossover and mutation methods to evolve the population for different coding segments.Simultaneously,it adjusted parameters adaptively during the evolutionary process and guided mutations through heuristic rules for local search,thereby enhancing the algorithm′s capability to escape local optima and consequently minimize the maximum completion time of the system. Comparison and analysis with other advanced algorithms on two small and medium-sized datasets demonstrated that the algorithm proposed yielded the most comprehensive solving effect.

Key words: Flexible Job-shop Scheduling Problem (FJSP), Automated Guided Vehicles (AGV), vehicle scheduling, Genetic Algorithms (GA), heuristic rules

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn