现代制造工程 ›› 2024, Vol. 528 ›› Issue (9): 25-33.doi: 10.16731/j.cnki.1671-3133.2024.09.004

• 先进制造系统管理运作 • 上一篇    下一篇

采用新编码GA的工艺规划与车间调度集成优化*

霍俊杰1, 王志坚2   

  1. 1 内蒙古锡林浩特市国能北电胜利能源有限公司,锡林浩特 026000;
    2 中北大学机械工程学院,太原 038507
  • 收稿日期:2023-09-28 出版日期:2024-09-18 发布日期:2024-09-27
  • 作者简介:霍俊杰,高级工程师,硕士,主要研究方向为煤矿信息化智能化、车间智能化控制。E-mail:huojunjie1986@sina.com
  • 基金资助:
    *国家自然科学基金面上项目(52275139)

Process planning and workshop scheduling integrated optimization adopting new coding mode genetic algorithm

HUO Junjie1, WANG Zhijian2   

  1. 1 Guoneng Beidian Shengli Energy Co., Ltd., Xilinhaote 026000, China;
    2 School of Mechanical, Engineering North University of China,Taiyuan 038507,China
  • Received:2023-09-28 Online:2024-09-18 Published:2024-09-27

摘要: 为了实现以完工时间最短为目标的工艺规划与车间调度集成优化,提出了基于新编码遗传算法(Genetic Algorithm,GA)的集成优化方法。对工艺规划与车间调度集成优化(Integrated Process Planning and Scheduling optimization,IPPS)问题进行了描述,并建立了完工时间最短的集成优化模型;设计一种具有最大柔性空间的染色体编码方法,从编码角度保证了集成优化问题的最大柔性度;根据IPPS问题特定约束改进了交叉变异方法,保证遗传操作前后均为可行解,使算法迭代均为有效迭代;进而制定了基于新编码遗传算法的IPPS问题求解流程。经Kim算例验证可知,与现有先进算法两阶段混合算法(Two-stage Hybrid Algorithm,THA)、改进蚁群算法(Enhanced Ant Colony Algorithm,EACA)和混合遗传算法(Hybrid Genetic Algorithm,HGA)相比,新编码GA在小规模、大规模生产情况下集成优化方案的完工时间均最小(分别为343、344、372、320、427及432 min),实验结果验证了新编码GA在IPPS问题求解中的可行性和先进性。

关键词: 集成优化, 工艺规划, 车间调度, 全新编码, 最大柔性空间, 遗传算法

Abstract: In order to achieve integrated optimization of process planning and workshop scheduling with the goal of minimizing completion time, a novel coding Genetic Algorithm (GA) based integrated optimization method was proposed. The Integrated Process Planning and Scheduling optimization (IPPS) problem was described and an integrated optimization model with minimizing completion time was established; a chromosome encoding method with maximum flexibility space was designed to ensure the maximum flexibility of integrated optimization problems from an encoding perspective; crossover and mutation method based on specific constraints of IPPS problem was improved, ensuring feasible solutions before and after genetic operation and making algorithm iterations effective; furthermore, a novel encoding genetic algorithm based IPPS problem solving process was developed. According to the verification of Kim example, compared with the existing advanced algorithms such as Two-stage Hybrid Algorithm (THA), Enhanced Ant Colony Algorithm (EACA), Hybrid Genetic Algorithm (HGA), completion time optimized by the novel coding GA algorithm is the smallest (i.e. 343, 344, 372, 320, 427, 432 min respectively) in the case of small-scale and large-scale production. The experimental results verify that the novel coding GA algorithm in solving IPPS problems is feasibility and progressiveness.

Key words: integrated optimization, process planning, workshop scheduling, novel coding, maximum flexible space, genetic algorithm

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn