现代制造工程 ›› 2025, Vol. 538 ›› Issue (7): 8-19.doi: 10.16731/j.cnki.1671-3133.2025.07.002

• 先进制造系统管理运作 • 上一篇    下一篇

基于Dueling-DQN的协同进化算法求解绿色分布式异构柔性作业车间调度问题*

夏良才, 陈仕军   

  1. 湖北文理学院数学与统计学院,襄阳 441053
  • 收稿日期:2024-06-17 出版日期:2025-07-18 发布日期:2025-08-04
  • 通讯作者: 陈仕军,博士,副教授,主要研究方向为组合最优化问题及其算法设计。E-mail:csj@hbuas.edu.cn
  • 作者简介:夏良才,硕士研究生,主要研究方向为车间调度问题及其算法设计。
  • 基金资助:
    *国家自然科学基金项目(71501064);湖北文理学院科研能力培育基金科技创新团队项目(2020kyp006)

Co-evolution algorithm based on Dueling-DQN for solving green distributed heterogeneous flexible job shop scheduling problem

XIA Liangcai, CHEN Shijun   

  1. School of Mathematics and Statistics, Hubei University of Arts and Science, Xiangyang 441053
  • Received:2024-06-17 Online:2025-07-18 Published:2025-08-04

摘要: 针对绿色分布式异构柔性作业车间调度问题(Green Distributed Heterogeneous Flexible Job shop Scheduling Problem,GDHFJSP),提出了基于竞争构架深度Q网络算法(Dueling Deep Q-Network,Dueling-DQN)的协同进化算法(Dueling-DQNCE),以最小化最大完工时间和最小化总能耗为目标,选择Pareto前沿解,获得优质的解决方案。首先,在该算法的初始化阶段提出了两种初始化种群方法,有效改善初始解种群的质量。其次,在解码阶段使用活动调度方案能更全面地探索解空间,获取高质量的解。针对多目标问题,提出了快速比较法,能快速高效地得到Pareto前沿解。接着,提出了10种基于知识驱动的邻域搜索策略,并使用Dueling-DQN智能学习来为每个解选择合适的局部搜索策略,加快种群的收敛速度。为了验证Dueling-DQNCE的有效性,将Dueling-DQNCE与文献中最先进的基于深度Q网络的协同进化算法(Co-Evolution with Deep-Q-network,DQCE)在20个算例上进行比较。计算结果表明,Dueling-DQNCE在计算资源和解质量上都优于DQCE,验证了所提出算法的有效性和优越性。

关键词: 绿色分布式异构作业车间调度, 协同进化, Pareto前沿解, 竞争架构深度Q网络算法

Abstract: For the Green Distributed Heterogeneous Flexible Job Shop Scheduling Problem (GDHFJSP),a Cooperative Evolution algorithm based on Dueling-DQN (Dueling-DQNCE) is proposed. The objective is to minimize the maximum completion time and total energy consumption,selecting Pareto frontier solutions to achieve high-quality solutions. Initially,two initialization methods are introduced to effectively enhance the quality of the initial solution population.Subsequently,an activity scheduling scheme is utilized in the decoding stage to comprehensively explore the solution space and obtain high-quality solutions. Addressing the multi-objective problem,a rapid comparison method is proposed to efficiently obtain Pareto frontier solutions. Furthermore,ten knowledge-driven neighborhood search strategies are introduced,and Dueling-DQN is employed to intelligently learn and select appropriate local search strategies for each solution,accelerating population convergence. To validate the effectiveness of Dueling-DQNCE,it is compared with the state-of-the-art DQCE algorithm in 20 instances. The computational results demonstrate that Dueling-DQNCE outperforms Co-Evolution with Deep-Q-network (DQCE) in terms of computational resources and solution quality,confirming its effectiveness and superiority.

Key words: green heterogeneous distributed job shop scheduling, collaborative evolution, Pareto frontier solutions, Dueling-DQN

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn