现代制造工程 ›› 2025, Vol. 539 ›› Issue (8): 31-38.doi: 10.16731/j.cnki.1671-3133.2025.08.004

• 机器人技术 • 上一篇    下一篇

工业机器人手臂终端滑模自适应容错控制方法

魏晓梦1, 刘婷婷2,3   

  1. 1 河南机电职业学院物联网学院,郑州 451192;
    2 郑州西亚斯学院计算机与软件工程学院,郑州 451150;
    3 河南省智能制造数字孪生工程研究中心,郑州 451150
  • 收稿日期:2024-12-13 出版日期:2025-08-18 发布日期:2025-09-09
  • 通讯作者: 刘婷婷,硕士,副教授,主要研究方向为计算机应用与智能控制。E-mail:ttliu81@126.com。
  • 作者简介:魏晓梦,讲师,硕士,主要研究方向为计算机应用技术。E-mail:xdreamw@126.com。
  • 基金资助:
    河南省科技攻关项目(242102210088)

Terminal sliding mode adaptive fault-tolerant control method for industrial robot arm

WEI Xiaomeng1, LIU Tingting2,3   

  1. 1 School of Internet of Things,Henan Mechanical & Electrical Vocational College,Zhengzhou 451192,China;
    2 School of Computer and Software Engineering,SIAS University,Zhengzhou 451150,China;
    3 Henan Intelligent Manufacturing and Digital Twin Engineering Research Center,Zhengzhou 451150,China
  • Received:2024-12-13 Online:2025-08-18 Published:2025-09-09

摘要: 针对工业机器人手臂中执行器的失效故障和偏移故障而导致轨迹跟踪精度下降的问题,提出了一种基于高阶滑模观测器的终端滑模自适应容错控制方法。首先通过对工业机器人手臂的运动状态进行分析,建立了带有执行器故障的工业机器人手臂动力学方程;然后设计了高阶滑模观测器来准确估计系统内的故障项,并在终端滑模面的基础上,设计了自适应容错控制律来补偿执行器故障带来的影响;最后利用Lyapunov函数进行了稳定性分析,证明了提出的控制方法可使工业机器人手臂运动轨迹准确跟踪信号指令。通过对六自由度工业机器人手臂的仿真分析,结果表明,设计的高阶滑模观测器能够准确估计出系统内的故障,最大估计误差仅为0.011 (°)/s2,提出的终端滑模自适应容错控制律能够有效克服执行器故障对工业机器人手臂运动轨迹的影响,在整个运动轨迹上的最大误差和平均误差分别为0.64和0.24 mm,表现出了较强的鲁棒性。在三维空间固定坐标点的定位测试结果表明,提出的终端滑模自适应容错控制律具有较高的控制精度,定位的最大误差和平均误差分别为0.89和0.31 mm,从而验证了提出的控制方法具有较强的工程实用性。

关键词: 工业机器人手臂, 执行器故障, 高阶滑模观测器, 终端滑模, 自适应容错控制

Abstract: Aiming at the problem of decreased trajectory tracking accuracy caused by actuator failure and offset faults in industrial robot arms,a terminal sliding mode adaptive fault-tolerant control method based on high-order sliding mode observer was proposed. Firstly,the dynamic equation of the industrial robot arm with actuator faults was established by analyzing the motion state of the industrial robot arm. Then,a high-order sliding mode observer was designed to accurately estimate the fault terms within the system,and an adaptive fault-tolerant control law was designed based on the terminal sliding mode surface to compensate for the impact of actuator faults. Finally,the stability analysis was conducted using Lyapunov function,demonstrating that the proposed control method can accurately track the command signal of the motion trajectory of industrial robot arms.The simulation results of a 6-degree-of-freedom industrial robot arm show that the designed high-order sliding mode observer can accurately estimate the faults within the system,with a maximum estimation error of only 0.011 (°)/s2. The proposed terminal sliding mode adaptive fault-tolerant control law can effectively overcome the impact of actuator faults on the motion trajectory of industrial robot arms,and the maximum and average errors on the entire motion trajectory are 0.64 and 0.24 mm,respectively,demonstrating strong robustness. The positioning test results of fixed coordinate points in three-dimensional space show that the proposed terminal sliding mode adaptive fault-tolerant control law has high control accuracy,with maximum and average positioning errors of 0.89 and 0.31 mm,respectively,verifying the strong engineering practicality of the proposed control method.

Key words: industrial robot arm, actuator malfunction, high-order sliding mode observer, terminal sliding mode, adaptive fault-tolerant control

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn