[1] XIE J,GUO Y,LIU D,et al.A multimodal fusion method for soldering quality online inspection[J].Journal of Intelligent Manufacturing,2024,24(3):1-14. [2] GAO H,GUO Y,HUANG S,et al.An online quality detection method with ensemble learning on imbalance data for wave soldering[J].Journal of Computing and Information Science in Engineering,2024,24(2):021006- 021015. [3] PANG G,SHEN C,CAO L,et al.Deep learning for anomaly detection:a review[J]. ACM Computing Surveys (CSUR),2021,54(2):1-38. [4] LIU D,GUO Y,XIE J,et al.Real-time quality inspection based on transfer learning and feature clustering for wave soldering[J].IEEE Transactions on Instrumentation and Measurement,2024,73:1-10. [5] 曾飞,李斌,周健,等.改进YOLOv7算法的排水管道缺陷检测与几何表征[J].现代制造工程,2024(3):110-118. [6] 孙铁强,秦愿伟,宋超,等.基于改进YOLOv7的钢卷端面缺陷检测[J].现代制造工程,2024(7):25,117-125. [7] ZHU J,DING C,TIAN Y,et al.Anomaly heterogeneity learning for open-set supervised anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle:IEEE/CVF,2024:17616-17626. [8] AKCAY S,ATAPOUR-ABARGHOUEI A,BRECKON T P.GANomaly:semi-supervised anomaly detection via adversarial training[C]//Proceedings of the 14th Asian Conference on Computer Vision (ACCV 2018).Cham:Springer International Publishing,2019:622-637. [9] CAO T,ZHU J,PANG G.Anomaly detection under distribution shift[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.[S.l.]:IEEE,2023:6511-6523. [10] CHRN Y,TIAN Y,PANG G,et al.Deep one-class classification via interpolated gaussian descriptor[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto:AAAI,2022,1:383-392. [11] LIU W,CHANG H,MA B,et al.Diversity-measurable anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2023:12147-12156. [12] BERGMAN L,HOSHEN Y.Classification-based anomaly detection for general data[J].arXiv preprint arXiv:2005.02359,2020. [13] HOU J,ZHANG Y,ZHONG Q,et al.Divide-and-assemble:learning block-wise memory for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.[S.l.]:IEEE,2021:8791-8800. [14] ZENATI H,FOO C S,LECOUANT B,et al.Efficient gan-based anomaly detection[J].arXiv preprint arXiv:1802.06222,2018. [15] SCHLEGL T,SEEBOCK P,WALDSTEIN S M,et al.f-AnoGAN:fast unsupervised anomaly detection with genera-tive adversarial networks[J].Medical Image Analysis,2019,54:30-44. [16] ZHU J,PANG G.Toward generalist anomaly detection via in-context residual learning with few-shot sample prompts[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2024:17826-17836. [17] BIAN J,HUI X,SUN S,et al.A novel and efficient CVAE-GAN-based approach with informative manifold for semi-supervised anomaly detection[J].IEEE Access,2019,7:88903-88916. [18] TAN M,LE Q.Efficientnet:rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning.[S.l.]:PMLR,2019:6105-6114. [19] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV 2018).[S.l.]:Springer,2018:3-19. [20] MIRZA M.Conditional generative adversarial nets[J].arXiv preprint arXiv:1411.1784,2014. |