现代制造工程 ›› 2025, Vol. 540 ›› Issue (9): 131-138.doi: 10.16731/j.cnki.1671-3133.2025.09.017

• 仪器仪表/检测/监控 • 上一篇    下一篇

基于改进YOLOv8n的车辆视线遮挡检测模型

高建平, 苟杨扬, 李浩天, 李哲, 谢成伟, 刘宁波   

  1. 河南科技大学车辆与交通工程学院,洛阳 471000
  • 收稿日期:2025-01-22 出版日期:2025-09-18 发布日期:2025-09-23
  • 通讯作者: 李哲,博士,讲师,主要研究方向为交通信号与控制、交通规划与管理、公交线网规划和公交客流分析。E-mail:2339371531@qq.com。
  • 作者简介:苟杨扬,硕士研究生,主要研究方向为智能网联汽车车路协同感知。
  • 基金资助:
    国家自然科学基金资助项目(52302408)

Vehicle occlusion detection model based on the improved YOLOv8n

GAO Jianping, GOU Yangyang, LI Haotian, LI Zhe, XIE Chengwei, LIU Ningbo   

  1. College of Vehicle and Traffic Engineering,Henan University of Science and Technology,Luoyang 471000,China
  • Received:2025-01-22 Online:2025-09-18 Published:2025-09-23

摘要: 随着自动驾驶技术的发展,目标检测凭借精确感知环境、实时性处理和鲁棒性等,成为自动驾驶安全行驶的前提。在高密度车辆聚集场景下,车辆相互之间容易产生遮挡,现有基于YOLOv8n改进算法在遮挡感知上存在一定的不足。为了解决这一问题,首先针对车辆周边信息提取能力不足的问题,提出了一种新的主干网络模块C2fCIBG;其次在新模块内部引入全局注意力机制(Global Attention Mechanism,GAM)和紧凑反转块(Compact Inverted Bottleneck,CIB)深度卷积,以增强对关键特征的捕捉能力和优化提取;最后为了使模型更准确地调整预测框的位置和大小,针对完整交并比(Complete Intersection Over Union,CIOU)损失函数鲁棒性较差的问题,将CIOU损失函数替换为多尺度惩罚距离交并比(Multi-scale Penalized Distance-Intersection Over Union,MPDIOU)损失函数,以提升目标区域的特征提取和分类判断,使其能够契合自动驾驶场景下车辆遮挡检测的需求。同时选取了KITTI数据集作为实验载体,与传统的YOLOv8n算法进行对比分析,以检测精度、召回率和平均精度均值评价指标展开评估。实验结果表明,3个评价指标分别增长了0.87 %、2.0 %和2.7 %,体现了模型在车辆遮挡感知中的可行性。

关键词: YOLOv8n, 车辆检测, 全局注意力机制, 损失函数, 主干网络

Abstract: With the development of autonomous driving technology,object detection has become a prerequisite for safe driving in autonomous driving due to its precise perception of the environment,real-time processing,and robustness.In crowded traffic scenarios where vehicles frequently obstruct one another,occlusion is still a significant challenge. Existing improved algorithms had exhibited certain deficiencies in occlusion perception.To address these issues. Firstly,the study proposed a new backbone network module,C2fCIBG,to deal with poor information extraction. Then,the GAM attention mechanism and CIB deep convolution were added to the new module to better capture key features and improve extraction. Finally,since CIOU was not robust enough,the loss function was changed to MPDIOU. Changing the loss function helped the model adjust the prediction box′s position and size more accurately, improving feature extraction and classification in the target area. Thus,it met the needs of vehicle occlusion detection in autonomous driving,the KITTI dataset was chosen for the experiment. The improved algorithm was compared with the traditional YOLOv8n algorithm.Evaluation was based on three key metrics:detection accuracy,recall rate,and mean average precision.The results showed increases of 0.87 %,2.0 %,and 2.7 % respectively,which proved that the improved algorithm was viable for vehicle occlusion perception.

Key words: YOLOv8n, vehicle detection, Global Attention Mechanism (GAM), loss function, backbone network

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn