[1] 田广,唐力伟,栾军英,等.基于时频分布的行星齿轮箱滚动轴承故障诊断研究[J].机械强度,2007(1):152-155. [2] 谢国民.基于视频小波联合小波法的采煤机关键部件故障诊断研究[D].阜新:辽宁工程技术大学,2012. [3] 付家才,王洪远.基于小波神经网络的采煤机摇臂故障诊断的研究[J].煤矿机械,2013(10):243-245. [4] 张晶晶.基干虚拟样机技术和显式动力学齿轮故障诊断模型[D].太原:太原理工大学,2015. [5] 钟先友,曾良才,赵春华.局域均值分解和1.5维谱在机械故障诊断中的应用[J].中国机械工程,2013(4):452-457. [6] 冷军发,荆双喜,吴中青.基于RBF神经网络的齿轮箱故障诊断[J].机械强度,2010(1):17-20. [7] 赵丽娟,李明昊,范佳艺.基于VP-MFC的采煤机摇臂系统齿轮性能退化可靠性分析[J].中国安全生产科学技术,2016,12(9):92-97. [8] BAJER A,DEMKOWICZ L.Dynamic contact/impact problems,energy conservation,and planetary gear trains[J].Computer Methods in Applied Mechanics & Engineering,2002,191(37/38):4159-4191. [9] SHANIAVSKI,SKVORTSOV.Crack growth in the gigacycle fatigue regime for helicopter gears[J].Fatigue & Fracture of Engineering Materials & Structures,1999,22(7):609-619. [10] 张清华.小波神经网络参数优化及其应用[D].哈尔滨:东北农业大学,2009. [11] 赵元喜,胥永刚,高立新,等.基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术[J].振动与冲击,2010,29(10):162-165. [12] MRUGALSKI M.Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis[J].Studies in Computational Intelligence,2014,510(1). [13] 朱孝露,鄂中凯.齿轮承载能力分析[M].北京:高等教育出版社,1991:287-320. [14] SAXENA A,WU B,VACHTSEVANOS G.A methodology for analyzing vibration data from planetary gear systems using complex Morlet wavelets.American Control Conference[C].[S.l.]:Proceedings of the IEEE,2005:4730-4735. |