[1] 丁璐,赵兰迎,李立,等.基于物联网的地震救援装备物资应急物流技术系统研究[J].灾害学,2020,35(2):200-205. [2] 张省,张樊宇.防疫物资“无接触”机器人配送优化研究[J].计算机工程与应用,2023,59(17):295-307. [3] ZHANG B,TANG L,DE C J,et al.A recursive receding horizon planning for unmanned vehicles[J].IEEE Transactions on Industrial Electronics,2015,62(5):2912-2920. [4] LIU Y Y,HOU Z,TAN Y Y,et al.Research on multi-AGVs path planning and coordination mechanism[J].IEEE Access,2020,8:213345-213356. [5] 杜鹏桢,唐振民,陆建峰,等.不确定环境下基于改进萤火虫算法的地面自主车辆全局路径规划方法[J].电子学报,2014,42(3):616-624. [6] LI Z, TAN R L, REN B X. Application of Inproved Ant Colony Algorithm in Path Plaming[J]. Complex, Intelljgent, and Software Intensive Systems(CISIS 2019),2020,993:596-603. [7] KARAMI A H,HASANZADEH M.An adaptive genetic algorithm for robot motion planning in 2D complex environments[J].Computers & Electrical Engineering,2015,43:317-329. [8] KUMAR P B,RAWAT H,PARHI D R.Path planning of humanoids based on artificial potential field method in unknown environments[J].Expert Systems,2019,36(2):1-12. [9] 张松灿,普杰信,司彦娜,等.蚁群算法在移动机器人路径规划中的应用综述[J].计算机工程与应用,2020,56(8):10-19. [10] 杨北辰,余粟.改进蚁群算法在路径规划中的应用[J].计算机应用研究,2022,39(11):3292-3297,3314. [11] 宋宇,张浩,程超.基于改进蚁群算法的物流机器人路径规划[J].现代制造工程,2022,506(11):35-40,47. [12] 沈智鹏,丁文娜,刘雨宸,等.基于改进自适应蚁群算法的无人帆船路径规划[J].哈尔滨工程大学学报,2023(6):1-7. [13] 李志锟,黄宜庆,徐玉琼.改进变步长蚁群算法的移动机器人路径规划[J].电子测量与仪器学报,2020,34(8):15-21. [14] WANG P L,ZHANG T,XIAO Y J.Application research of ant colony cellular optimization algorithm in popula-tion evacuation path planning[J].Acta Physica Sinica,2020,69(8):240-248. [15] 霍非舟,高帅云,魏云飞,等.改进蚁群算法的拥堵环境疏散路径规划研究[J].计算机工程与应用,2023,59(11):263-271. [16] DORIGO M.The ant system:an autocatalytic optimizing process[C]//Proceedings of the First European Conference on Artificial Life,Paris,France:[s.n.],1991. [17] 王伟嘉,郑雅婷,林国政,等.集群机器人研究综述[J].机器人,2020,42(2):232-256. [18] 刘加奇,王泰华,董征.基于改进蚁群算法的移动机器人路径规划[J].传感器与微系统,2022,41(5):140-143. [19] 魏立新,张钰锟,孙浩,等.基于改进蚁群和DWA算法的机器人动态路径规划[J].控制与决策,2022,37(9):2211-2216. [20] 熊君丽,黄华毅.融合改进蚁群和DWA的移动机器人路径规划[J].机械设计与制造,2023(6):1-8. |