[1] WANG Y,GUO J,XU D,et al.Micro-/nano-structured flexible electronics for biomedical applications[J].Biomedical Technology,2023,2:1-14. [2] DAUS A,VAZIRI S,CHEN V,et al.High-performance flexible nanoscale transistors based on transition metal dichalcogenides[J].Nature Electronics,2021,4(7):495-501. [3] LIN R,LEI M,DING S,et al.Applications of flexible electronics related to cardiocerebral vascular system[J].Materials Today Bio,2023(4):100787. [4] LIU X,WEI Y,QIU Y.Advanced flexible skin-like pressure and strain sensors for human health monitoring[J].Micromachines,2021,12(6):695. [5] SONG Y,MIN J,GAO W.Wearable and implantable electronics:moving toward precision therapy[J].ACS Nano,2019,13(11):12280-12286. [6] SONG Y,MIN J,YU Y,et al.Wireless battery-free wearable sweat sensor powered by human motion[J].Science advances,2020,6(40):9842. [7] CIANCHETTI M,LASCHI C,MENCIASSI A,et al.Biomedical applications of soft robotics[J].Nature Reviews Materials,2018,3(6):143-153. [8] XIE M,ZHU M,YANG Z,et al.Flexible self-powered multifunctional sensor for stiffness-tunable soft robotic gripper by multimaterial 3D printing[J].Nano Energy,2021,79:105438. [9] BEKER L,MATSUHISA N,YOU I,et al.A bioinspired stretchable membrane-based compliance sensor[J].Proceedings of the National Academy of Sciences,2020,117(21):11314-11320. [10] WARHEIT D B,LAURENCE B R,REED K L,et al.Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats[J].Toxicological Sciences,2004,77(1):117-125. [11] SONG H,LUO G,JI Z,et al.Highly-integrated,miniaturized,stretchable electronic syst-ems based on stacked multilayer network materials[J].Science Advances,2022,8(11):3785. [12] WANG Y,SU S,CAI L,et al.Monolithic integration of all-in-one supercapacitor for 3D electronics[J].Advanced Energy Materials,2019,9(15):1900037. [13] GUO L,DEWEERTH S P.High-density stretchable electronics:toward an integrated multilayer composite[J].Advanced Materials (Deerfield Beach,Fla.),2010,22(36):4030. [14] YOO H,PARK H,YOO S,et al.Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects[J].Nature Communications,2019,10(1):2424. [15] KIM M,ALROWAIS H,BRAND O.3D-Integrated and multifunctional all-soft physical microsystems based on liquid metal for electronic skin applications[J].Advanced Electronic Materials,2018,4(2):1700434. [16] KHIM D,BAEG K J,KANG M,et al.Inkjet-printing-based soft-etching technique for high-speed polymer ambipolar integrated circuits[J].ACS Applied Materials & Interfaces,2013,5(23):12579-12586. [17] KWON J,TAKEDA Y,FUKUDA K,et al.Three-dimensional,inkjet-printed organic transistors and integrated circuits with 100% yield,high uniformity,and long-term stability[J].ACS Nano,2016,10(11):10324-10330. [18] WANG S,NIE Y,ZHU H,et al.Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs[J].Science Advances,2022,8(13):5511. [19] KUJALA M,KOLOLUOMA T,KESKINEN J,et al.Bending reliability of screen-printed vias for a flexible energy module[J].NPJ Flexible Electronics,2020,4(1):24. [20] ESPALIN D,MUSE D W,MACDONALD E,et al.3D Printing multifunctionality:structureswith electronics[J].The International Journal of Advanced Manufacturing Technology,2014,72:963-978. [21] HUANG Z,HAO Y,LI Y,et al.Three-dimensional integrated stretchable electronics[J].Nature Electronics,2018,1(8):473-480. [22] SONG S,HONG H,KIM K Y,et al.Photothermal Lithography for Realizing a Stretchable Multilayer Electronic Circuit Using a Laser[J].ACS Nano,2023,17(21):21443-21454. [23] JUNG W,KOIRALA G R,LEE J S,et al.Solvent-assisted filling of liquid metal and its selective dewetting for the multilayered 3D interconnect in stretchable electronics[J].ACS Nano,2022,16(12):21471-21481. [24] ZHU J,LI J,TONG Y,et al.Recent progress in multifunctional,reconfigurable,integrated liquid metal-based stretchable sensors and standalone systems[J].Progress in Materials Science,2023(6):101228. [25] ROGERS J A,SOMEYA T,HUANG Y.Materials and mechanics for stretchable electronics[J].Science,2010,327(5973):1603-1607. [26] KHOSHMANESH K,TANG S Y,ZHU J Y,et al.Liquid metal enabled microfluidics[J].Lab on a Chip,2017,17(6):974-993. [27] KIM D,THISSEN P,VINER G,et al.Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor[J].ACS Applied Materials & Interfaces,2013,5(1):179-185. [28] WANG X,LIU X,BI P,et al.Electrochemically enabled embedded three-dimensional printing of freestanding gallium wire-like structures[J].ACS Applied Materials & Interfaces,2020,12(48):53966-53972. [29] LI J,WASLEY T,NGUYEN T T,et al.Hybrid additive manufacturing of 3D electronic systems[J].Journal of Micromechanics and Microengineering,2016,26(10):105005. [30] WEI C,DONG J.Development and modeling of melt electrohydrodynamic-jet printing of phase-change inks for high-resolution additive manufacturing[J].Journal of Manufacturing Science and Engineering,2014,136(6):061010. [31] HAN Y,DONG J.High-resolution direct printing of molten-metal using electrohydrodynamic jet plotting[J].Manufacturing Letters,2017,12:6-9. [32] REN P,DONG J.Direct Fabrication of VIA Interconnects by Electrohydrodynamic Printing for Multi-Layer 3D Flexible and Stretchable Electronics[J].Advanced Materials Technologies,2021,6(9):2100280. [33] MKHIZE N,BHASKARAN H.Electrohydrodynamic jet printing:introductory concepts and considerations[J].Small Science,2022,2(2):2100073. [34] MARCHAND A,WEIJS J H,SNOEIJER J H,et al.Why is surface tension a force parallel to the interface?[J].American Journal of Physics,2011,79(10):999-1008. |