[1] 刘骥,王红光,龙珊珊.强噪声下轴承故障频率的粒子群随机共振提取[J].现代制造工程,2024(7):144-151. [2] 欧惠宇,杨俊生,叶健熠,等.轴承倾斜微动磨损与失效分析[J].轴承,2023(4):54-59. [3] 刘文龙.滚动轴承性能退化评估及剩余寿命预测方法研究[D].重庆:重庆交通大学,2023. [4] MAKHOUL J,COSELL L. LPCW:an LPC vocoder with linear predictive spectral warping[C]//ICASSP ′76. IEEE International Conference on Acoustics,Speech,and Signal Processing. Philadetphia:IEEE,1976:466-469. [5] HERMANSKY H. Perceptual Linear Predictive (PLP) analysis of speech[J]. Journal of the Acoustical Society of America,1990,87(4):1738-1752. [6] VERGIN R,O′SHAUGHNESSY D,FARHAT A. Generalized Mel frequency cepstral coefficients for large-vocabulary speaker-independent continuous-speech recognition[J]. IEEE Transactions on Speech and Audio Processing,1999,7(5):525-532. [7] KIM C,STERN R M. Feature extraction for robust speech recognition using a power-law nonlinearity and power-bias subtraction[C]//INTERSPEECH 2009,10th Annual Conference of the International Speech Communication Association. Brighton:ISCA,2009:28-31. [8] 杨佳睿,冯早,朱雪峰.变工况下管道堵塞识别的声纹模型研究[J].机械科学与技术,2023,42(6):914-922. [9] 单帅杰,刘建宝,李厚朴.基于GMM和改进MFCCs的电机轴承故障诊断方法研究[J].舰船电子工程,2023,43(10):156-161. [10] LI M,ZHAN H,QIU A,et al. Voiceprint recognition of transformer fault based on blind source separation and convolutional neural network[C]//2021 IEEE Electrical Insulation Conference (EIC). Denver:IEEE,2021:618-621. [11] ZHANG Q,ZHAI H,MA Y,et al. Enhanced-deep-residual-shrinkage-network-based voiceprint recognition in the electric industry[J]. Electronics,2023,12(14):3017-3025. [12] DAVIS S,MERMELSTEIN P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[J]. IEEE Transactions on Acoustics Speech and Signal Processing,1980,28(4):357-366. [13] ABDUL Z K,AL-TALABANI A K,RAMADAN D O. A hybrid temporal feature for gear fault diagnosis using the long short term memory[J]. IEEE Sensors Journal,2020,20(23):14444-14452. [14] LI X,WANG W,HU X,et al. Selective Kernel Networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach:IEEE,2019:510-519. [15] 陈扬黎鸿.基于PNCC和Stacking集成策略的流化床内聚乙烯颗粒结块程度识别[D].北京:北京化工大学,2023. |