现代制造工程 ›› 2025, Vol. 533 ›› Issue (2): 37-43.doi: 10.16731/j.cnki.1671-3133.2025.02.005

• 机器人技术 • 上一篇    下一篇

基于改进白鹭群优化算法的移动机器人路径规划*

赵正君, 胡立坤, 蔡成杰, 韦文扬   

  1. 广西大学电气工程学院,南宁 530004
  • 收稿日期:2024-03-04 出版日期:2025-02-18 发布日期:2025-02-27
  • 通讯作者: 胡立坤,博士,教授,主要研究方向为机器人控制、机器视觉、自动化和人工智能等。E-mail:2031396442@qq.com
  • 作者简介:赵正君,硕士研究生,主要研究方向为移动机器人路径规划。
  • 基金资助:
    *广西科技计划项目(桂科AB21220039)

Mobile robot path planning based on improved egret swarmoptimization algorithm

ZHAO Zhengjun, HU Likun, CAI Chengjie, WEI Wenyang   

  1. School of Electrical Engineering,Guangxi University,Nanning 530004,China
  • Received:2024-03-04 Online:2025-02-18 Published:2025-02-27

摘要: 针对改进智能优化算法规划效率低、搜索时间长、路径较为曲折等问题,将白鹭群优化算法首次应用于移动机器人路径规划,并提出了一种基于改进白鹭群优化算法的移动机器人路径规划方法。该算法在探索阶段利用对立学习进行种群初始化,以降低路径搜索代价;采用正余弦算法和贪婪策略对白鹭个体位置更新予以改进,以平衡算法的局部开发和全局搜索能力;利用坐标微调策略以获得安全可靠的规划路径。在优化阶段采用垂距限值法和分段贝塞尔曲线对路径进行优化处理,以得到移动机器人的最终运动路径。仿真结果表明,该算法较对比算法路径规划效率显著提高,总体耗时更短,路径更优,能减少路径转弯次数,进而提升移动机器人的整体工作效率。

关键词: 路径规划, 路径优化, 白鹭群优化算法, 坐标微调策略, 正余弦算法

Abstract: Addressing issues such as low planning efficiency,long search time,and complex paths in improving intelligent optimization algorithms,the egret swarm optimization algorithm was first applied to mobile robot path planning,and a new method for mobile robot path planning based on the improved egret swarm optimization algorithm was proposed. In the exploration stage,the algorithm utilized adversarial learning for population initialization to reduce the cost of path search;the sine cosine algorithm and greedy strategy were used to improve the updating of individual positions of egrets,in order to balance the local development and global search capabilities of the algorithm;coordinate fine-tuning strategy was used to obtain a safe and reliable planning path. In the optimization stage,the vertical distance limit method and segmented Bessel curve were used to optimize the path,in order to obtain the final motion path of the mobile robot. The simulation results show that this algorithm significantly improves the efficiency of path planning compared to the comparative algorithm,with shorter overall time consumption and better paths. It can reduce the number of path turns and thereby improve the overall work efficiency of mobile robots.

Key words: path planning, path optimization, egret swarm optimization algorithm, coordinate fine-tuning strategy, sine cosine algorithm

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn