现代制造工程 ›› 2025, Vol. 537 ›› Issue (6): 58-66.doi: 10.16731/j.cnki.1671-3133.2025.06.006

• 机器人技术 • 上一篇    下一篇

基于麻雀搜索-蚁群算法的移动机器人路径规划研究*

董建林, 官源林, 程琪, 许广胜, 王体晨   

  1. 青岛理工大学机械与汽车工程学院,青岛 266520
  • 收稿日期:2024-08-23 出版日期:2025-06-18 发布日期:2025-07-16
  • 通讯作者: 官源林,博士研究生,讲师,主要研究方向为智能软体材料驱动与控制。E-mail:guanyuanlin@qut.edu.cn
  • 作者简介:董建林,硕士研究生,主要研究方向为模式识别。E-mail:625321773@qq.com
  • 基金资助:
    *国家自然科学基金项目(52375348);青岛市自然科学基金项目(23-2-1-216-zyyd-jch,23-2-1-125-zyyd-jch);山东省高等学校科技计划项目(J17KA055,J17KA047)

Mobile robot path planning based on sparrow search-ant colony algorithm

DONG Jianlin, GUAN Yuanlin, CHENG Qi, XU Guangsheng, WANG Tichen   

  1. School of Mechanical and Automotive Engineering,Qingdao University of Technology, Qingdao 266520,China
  • Received:2024-08-23 Online:2025-06-18 Published:2025-07-16

摘要: 针对传统蚁群算法在路径规划应用中存在最优路径长、收敛速度缓慢等问题,提出了一种基于麻雀搜索-蚁群算法的移动机器人路径规划方法。在麻雀搜索-蚁群算法中,首先,通过麻雀搜索算法形成次优路径,按照次优路径生成蚁群算法的初始信息素分布;其次,在状态转移概率的计算中,引入A*算法启发式函数、弯折约束因子以及距离权重系数,使蚁群算法在每一节点的状态转移概率达到最优,以缩短最优路径;最后,在信息素更新策略中,采用基于迭代、角度因素以及奖惩机制的自适应信息素更新策略,加快蚁群算法的收敛速度。仿真结果表明,该方法能够生成高质量的最优解,在收敛速度上较其他方法有所提升,转折次数有所减少。此外,该方法在路径平滑度和适应复杂地图的鲁棒性方面表现出显著优势,进一步验证了其在复杂环境下的实用性和稳定性。

关键词: 蚁群算法, 路径规划, 状态转移概率, 信息素更新策略

Abstract: To address the issues of long optimal paths and slow convergence speed in traditional ant colony algorithm for path planning applications,a mobile robot path planning method based on the sparrow search-ant colony algorithm is proposed.In the sparrow search-ant colony algorithm,the sparrow search algorithm is first used to generate a suboptimal path which is then used to establish the initial pheromone distribution for the ant colony algorithm. Next, in the calculation of state transition probability, the heuristic function of the A* algorithm,a bending constraint factor,and a distance weight coefficient are introduced to make the state transition probability selected by the ant colony algorithm optimal at each node,thereby shortening the optimal path. Finally,in the pheromone update strategy,an adaptive pheromone update strategy based on iteration,angle factors,and a reward-punishment mechanism is employed to accelerate the convergence speed of the ant colony algorithm. According to the simulation results,the suggested method could produce high-quality optimal solutions while simultaneously decreasing the number of turns and increasing convergence speed when compared to alternative approaches. The suggested method has further confirmed its stability and practicability in complex contexts by demonstrating notable improvements in path smoothness and robustness to adapt to complex maps.

Key words: ant colony algorithm, path planning, state transition probability, pheromone update strategy

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn