[1] 陈月云,简荣灵,赵庸旭.基于快速群体智能算法的毫米波天线设计[J].电子与信息学报,2018,40(2):493-499. [2] 张晓倩,黄磊,石雨婷,等.基于多目标优化的改进蚁群路径规划算法[J].现代制造工程,2023(11):40-46. [3] 曹祥红,李欣妍,魏晓鸽,等.基于Dijkstra-ACO混合算法的应急疏散路径动态规划[J].电子与信息学报,2020,42(6):1502-1509. [4] 曾钰桔,陈波,瞿睿,等.基于改进蚁群算法的移动机器人路径规划研究[J].现代制造工程,2023(10):57-63,119. [5] YUE L,CHEN H.Unmanned vehicle path planning using a novel ant colony algorithm[J]. EURASIP Journal on Wireless Communications and Networking,2019,136:1-9. [6] TAN Y,OUYANG J,ZHANG Z,et al.Path planning for spot welding robots based on improved ant colony algorithm[J].Robotica,2023,41(3):926-938. [7] DENG W,XU J,SONG Y,et al.An effective improved co-evolution ant colony optimisation algorithm with multi-strategies and its application[J].International Journal of Bio-Inspired Computation,2020,16(3):158-170. [8] 许建民,邓冬冬,宋雷,等.基于多级视野自适应蚁群算法的移动机器人路径规划[J].农业机械学报,2024,55(11):475-485. [9] 李理,李鸿,单宁波.多启发因素改进蚁群算法的路径规划[J].计算机工程与应用,2019,55(5):219-225,250. [10] CUI Y,REN J,ZHANG Y.Path planning algorithm for unmanned surface vehicle based on optimized ant colony algorithm[J].IEEJ Transactions on Electrical and Electronic Engineering,2022,17(7):1027-1037. [11] ZHENG Y,LUO Q,WANG H.et al.Path planning of mobile robot based on adaptive ant colony algorithm[J].Journal of Intelligent & Fuzzy Systems:Applications in Engineering and Technology,2020,39(4):5329-5338. [12] CUI J G,WU L,HUANG X D,et al.Multi-strategy adaptable ant colony optimization algorithm and its application in robot path planning[J].Knowledge-Based Systems,2024,288:111459. [13] GAO W,TANG Q,YE B,et al.An enhanced heuristic ant colony optimization for mobile robot path planning[J].Soft Comput,2020,24:6139-6150. [14] WU M,GAO B,HU H,et al.Research on path planning of tea picking robot based on ant colony algorithm[J].Measurement and Control,2024,57(8):1051-1067. [15] MIAO C W,CHEN G Z,YAN C L,et al.Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm[J].Computers & Industrial Engineering,2021,156:1-10. [16] SHAN D,ZHANG S,WANG X,et al.Path-planning strategy:adaptive ant colony optimization combined with an enhanced dynamic window approach[J].Electronics,2024,13:825. [17] WANG W,LI J,BAI Z,et al.Toward optimization of AGV path planning:an RRT*-ACO algorithm[J]. IEEE Access,2024,12:18387-18399. [18] CHEN T,CHEN S,ZHANG K,et al.A jump point search improved ant colony hybrid optimization algorithm for path planning of mobile robot[J].International Journal of Advanced Robotic Systems,2022,19(5):1-9. [19] FU J,LV T,LI B.Underwater submarine path planning based on artificial potential field ant colony algorithm and velocity obstacle method[J].Sensors,2022,22:3652. [20] DAI X L,LONG S,ZHANG Z,et al.Mobile robot path planning based on ant colony algorithm with A* heuristic method[J].Frontiers in Neurorobotics,2019,13:13-15. [21] SHAFIQ M,ALI Z A,ISRAR A,et al.Convergence analysis of path planning of multi-UAVs using max-min ant colony optimization approach[J].Sensors,2022,22:5395. [22] ZHANG Z,LU J,XU Z,et al.Mobile robot path planning based on hybrid ant colony optimization[J].Journal of Intelligent & Fuzzy System:Applications in Engineering and Technology,2023,45(2):2611-2623. [23] 张志文,刘伯威,张继园,等.麻雀搜索算法-粒子群算法与快速扩展随机树算法协同优化的智能车辆路径规划[J].中国机械工程,2024,35(6):993-999,1009. [24] ZHANG Z,HE R,YANG K.A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm[J].Advances in Manufacturing,2022,10:114-130. |