[1] 周思柱,周后俊,华剑,等. 材质对超高压压裂泵泵头体自增强性能的影响研究[J].机械设计与制造,2010(7):67-68. [2] ZHANG S,ZHOU S,LI M.Research on fatigue crack propagation process of fracturing pumphead[J].Engineering Failure Analysis,2020,116:104726. [3] 韩栋,修吉平,李佳玲,等.压裂泵泵头体失效分析[J].失效分析与预防,2012,7(2):126-131. [4] 李宁.超高压泵头体自增强后的残余应力与疲劳寿命研究[D].武汉:武汉科技大学,2015:72-102. [5] 严奉林,周思柱,李宁,等. 自增强超高压柱塞泵泵头体设计[J].机床与液压,2013,41(11):102-104. [6] 何家文,胡奈赛,张定铨. 残余应力对高周疲劳性能的影响[J].西安交通大学学报,1992,26(3):25-32. [7] 聂祥樊,李应红,何卫锋,等.航空发动机部件激光冲击强化研究进展与展望[J].机械工程学报,2021,57(16):293-305. [8] DENG Weiwei,WANG Changyu,LU Haifei,et al.Progressive developments,challenges and future trends in laser shock peening of metallic materials and alloys:A comprehensive review[J]. International Journal of Machine Tools and Manufacture,2023,191:104061. [9] ZHANG Xiushuo,MA Yu′e,YANG Meng,et al. A comprehensive review of fatigue behavior of laser shock peened metallic materials[J]. Theoretical and Applied Fracture Mechanics,2022,122:103642. [10] LI Xiang,HE Weifeng,LUO Sihai,et al.Simulation and Experimental Study on Residual Stress Distribution in Titanium Alloy Treated by Laser Shock Peening with Flat-Top and Gaussian Laser Beams[J]. Materials,2019,12(8):1343. [11] 田凯,帅仕祥,罗学昆,等.激光冲击/机械喷丸复合强化对TC4钛合金外物损伤疲劳性能的影响[J].航空材料学报,2023,43(4):94-101. [12] 曹子文,孙汝剑,车志刚,等.金属基复合材料激光冲击高周疲劳行为及增寿机理[J].塑性工程学报,2023,30(4):170-177. [13] 罗高丽,张凌峰,熊毅,等.激光冲击强化对Ti-6Al-3Nb-2Zr-1Mo钛合金组织与性能的影响[J].中国激光,2022,49(8):215-226. [14] 焦清洋,韩培培,陆莹,等.激光冲击强化对TA15钛合金残余应力和力学性能的影响[J].塑性工程学报,2021,28(3):146-152. [15] JIANG Y,JI B,GAN X,et al.Study on the effect of laser peening with different power densities on fatigue life of fastener hole[J].Optics and Laser Technology,2018,106:311-320. [16] LI Wei,CHEN Huitao.Optimization of multiple laser shock peening on high-cycle fatigue performance of aluminized AISI 321 stainless steel[J].International Journal of Fatigue,2021,153:106505. [17] LARSON A E,REN X,ADU-GYAMFI S,et al.Effects of scanning path gradient on the residual stress distribution and fatigue life of AA2024-T351 aluminium alloy induced by LSP[J].Results in Physics,2019,13:102-123. [18] 邹世坤.激光冲击强化技术[M].北京:国防工业出版社,2021:1-2. [19] PEYREP,FABBROR,MERRIENP,et al.Laser shock processing of aluminum alloys,Application to high cycle fatigue behavior[J].Materials Science & Engineering A,1996,210(1/2):102-113. [20] 田增,何卫锋,王亚洲,等.激光冲击强化4330钢疲劳性能研究[J].热加工工艺,2022,51(22):102-105. [21] ZHANG W,YAO Y L.Microscale laser shock processing—modeling,testing,and microstructure characterization[J].Journal of Manufacturing Processes,2001,3(2):128-143. [22] 王博涵,程礼,丁均梁,等.TC4钛合金激光冲击强化数值模拟[J].航空动力学报,2021,36(5):959-968. [23] 李志勇,朱文辉,程经毅,等.实验研究脉冲强激光在铝靶中诱导的冲击波[J].中国激光,1997,24(3):259-262. [24] 花银群,蔡峥嵘,陈瑞芳,等.TC4钛合金激光搭接冲击强化的实验和数值模拟[J].激光技术,2010,34(5):632-635,639. [25] FABBRO R,FOURNIER J,BALLARD P,et al.Physical study of laser-produced plasma in confined geometry[J].Journal of Applied Physics,1990,68(2):775-784. [26] 张思.压裂泵头体相贯内腔裂纹扩展规律及疲劳寿命研究[D].荆州:长江大学,2018:81-82. [27] DAVIDL,LITTLEFIELD,CHARLESE,et al.THE PENETRATION OFSTEEL TARGETS FINITE INRADIAL EXTENT[J].Intemational Journal of Impact Engineering,1997,19(1):49-62. [28] 马冬辉.激光喷丸强化316L不锈钢动态充氢慢拉伸试验研究及数值模拟[D].镇江:江苏大学,2022:49-51.
|