现代制造工程 ›› 2025, Vol. 539 ›› Issue (8): 10-18.doi: 10.16731/j.cnki.1671-3133.2025.08.002

• 先进制造系统管理运作 • 上一篇    下一篇

基于改进樽海鞘群算法的多目标混合流水车间调度优化

夏兴华1, 洪铁懿2, 金佳呈2, 韩忠华2   

  1. 1 沈阳建筑大学计算机科学与工程学院,沈阳 110000;
    2 沈阳建筑大学电气与控制工程学院,沈阳 110000
  • 收稿日期:2024-08-12 出版日期:2025-08-18 发布日期:2025-09-09
  • 作者简介:夏兴华,硕士研究生导师,副教授,主要研究方向为车间调度、智能优化算法、深度学习。洪铁懿,硕士研究生,主要研究方向为车间调度、智能优化算法。金佳呈,硕士研究生,主要研究方向为车间调度、智能优化算法。韩忠华,硕士研究生导师,教授,主要研究方向为强化学习、智能优化算法。E-mail:xxh8787@sjzu.edu.cn;1097002246@qq.com;1874797900@qq.com;xiaozhonghua1977@163.com
  • 基金资助:
    国家自然科学基金项目(62273243);辽宁省教育厅高等学校基本科研项目重点项目(LJKZ0583);辽宁省科技厅应用基础研究计划项目(2022JH2/101300253);沈阳市科技计划项目(22-322-3-36)

Multi-objective hybrid flow shop scheduling optimization based on improved salp swarm algorithm

XIA Xinghua1, HONG Tieyi2, JIN Jiacheng2, HAN Zhonghua2   

  1. 1 School of Computer Science and Engineering,Shenyang Jianzhu University,Shenyang 110000,China;
    2 School of Electrical and Control Engineering, Shenyang Jianzhu University,Shenyang 110000,China
  • Received:2024-08-12 Online:2025-08-18 Published:2025-09-09

摘要: 针对混合流水车间调度问题,同时考虑最小化最大完工时间和设备加工能耗,提出了一种基于Q学习(Q-learning)的改进樽海鞘群多目标优化算法。为了提升算法的收敛速度,采用混沌映射与启发式原则相结合的策略生成多样化的初始种群;为了平衡算法的全局搜索能力和局部开发能力,在选择领导者占比中引入Q-learning自适应的选择策略;为了提升算法寻优精度,提出一种有效的变邻域搜索策略,加强局部开发能力。在公开的数据集上开展实验验证,实验结果表明,提出的算法能够有效地解决混合流水车间多目标优化问题。

关键词: 多目标混合流水车间调度, 樽海鞘群算法, Q学习, 混沌映射, 变邻域搜索

Abstract: Aiming at the hybrid flow shop scheduling problem, an improved multi-objective salp swarm optimization algorithm based on Q-learning is proposed, simultaneously considering the minimization of makespan and equipment processing energy consumption. To enhance the convergence speed of the algorithm, a strategy combining chaotic mapping and heuristic rules is employed to generate diversified initial populations. To balance the global search capability and local exploitation capability of the algorithm, a Q-learning adaptive selection strategy is introduced in the selection of leaders proportion. To improve the optimization accuracy of the algorithm, an effective variable neighborhood search strategy is proposed to strengthen the local exploitation capability. Experimental validations conducted on public datasets demonstrate that the proposed algorithm can effectively solve the multi-objective optimization problem in hybrid flow shop scheduling.

Key words: multi-objective hybrid flow shop scheduling, salp swarm algorithm, Q-learning, chaotic mapping, variable neighborhood search

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn