现代制造工程 ›› 2025, Vol. 539 ›› Issue (8): 48-62.doi: 10.16731/j.cnki.1671-3133.2025.08.006

• 车辆工程制造技术 • 上一篇    下一篇

基于四轮转向无人驾驶汽车的轨迹跟踪稳定性控制研究

陈鹏宇1,2, 孙有平1,2,3, 李旺珍1,2,3, 营江澎1,2, 李松蔚1   

  1. 1 广西科技大学机械与汽车工程学院,柳州 545006;
    2 广西汽车零部件与整车技术重点实验室,柳州 545006;
    3 广西土方机械协同创新中心,柳州 545006
  • 收稿日期:2024-08-20 出版日期:2025-08-18 发布日期:2025-09-09
  • 作者简介:陈鹏宇,硕士研究生,主要研究方向为新能源汽车与智能控制技术、汽车线控底盘。孙有平,博士研究生,教授,博士生导师,主要研究方向为新能源汽车与智能控制技术、汽车线控底盘。E-mail:374909010@qq.com;syptaiji@126.com
  • 基金资助:
    广西重点研发计划项目(桂科AB23026104);柳州市科技计划项目(2023PRJ0102);广西汽车零部件与整车技术重点实验室自主研究课题项目(2023GKLACVTKF05)

Stability control study on trajectory tracking of unmanned vehicle based on four-wheel steering

CHEN Pengyu1,2, SUN Youping1,2,3, LI Wangzhen1,2,3, YING Jiangpeng1,2, LI Songwei1   

  1. 1 College of Mechanical and Automotive Engineering,Guangxi University of Science and Technology,Liuzhou 545006,China;
    2 Guangxi Key Laboratory of Automotive Components and Vehicle Technology,Liuzhou 545006,China;
    3 Guangxi Earthmoving Machinery Collaborative Innovation Center,Liuzhou 545006,China
  • Received:2024-08-20 Online:2025-08-18 Published:2025-09-09

摘要: 为了解决传统模型预测控制算法在智能汽车轨迹跟踪上的局限性并提高自动驾驶过程中轨迹跟踪的精确性和汽车的横向稳定性,提出了一种基于权重系数自适应模糊调节并结合前轮转角补偿与后轮主动转向控制的模型预测控制轨迹跟踪策略。首先,将整体控制结构分为上下2层:上层为轨迹跟踪控制层,利用模型预测控制算法得出汽车的理想前轮转角;下层采用自适应滑模控制理论设计前轮转角补偿器和后轮主动转向控制器,得出汽车的附加前轮转角和后轮转角,由此实现四轮转向轨迹跟踪控制。其次,针对固定权重系数的模型预测控制对于车速和路面附着系数变化适应性较差的问题,提出了一种基于模糊预测控制的权重系数自适应调节策略。最后,通过Simulink软件与CarSim软件,在不同车速和不同路面附着系数的试验条件下将该策略与传统模型预测控制算法进行比较,仿真结果表明:车速对传统模型预测控制算法的轨迹跟踪有较大程度的影响,而对改进后的算法影响较小,尤其当车速较高且路面附着系数较低时,改进后的算法使轨迹误差更小,同时能保证汽车安全、稳定的行驶。

关键词: 四轮转向, 轨迹跟踪, 模糊模型预测控制, 前轮转角补偿与后轮主动转向控制, 横向稳定性

Abstract: In order to solve the limitations of traditional model prediction algorithms in intelligent vehicle trajectory tracking and to improve the accuracy of trajectory tracking and the lateral stability of the vehicle during the automatic driving process,a model prediction control trajectory tracking strategy based on adaptive fuzzy adjustment of weight coefficients and combining front-wheel cornering compensation and rear-wheel active steering control was proposed. First,the overall control structure was divided into two layers:the upper layer was the trajectory tracking control layer,which used the model predictive control algorithm to derive the ideal front wheel turning angle of the vehicle;the lower layer used the adaptive sliding mode control theory to design the front wheel turning angle compensator and the active rear wheel steering controller to derive the compensated front wheel turning angle and the rear wheel turning angle of the vehicle,and thus realized the four-wheel steering trajectory tracking control. Secondly,for the problem that the model predictive control with fixed weight coefficients was poorly adapted to the change of external vehicle speed and road surface adhesion coefficient,a weight coefficient adaptive adjustment strategy based on fuzzy control was proposed. Finally,through Simulink and CarSim software,a comparison was made with the traditional algorithm under the experimental conditions of different vehicle speeds and different road surface adhesion coefficients,and the simulation results show that different longitudinal vehicle speeds have a great degree of influence on the trajectory tracking of the traditional algorithm,while the improved algorithm has less influence. Especially when the vehicle speed is high and the road surface adhesion coefficient is low,the improved algorithm makes the trajectory error smaller,and at the same time ensures that the vehicle can drive safely and stably.

Key words: four-wheel steering, trajectory tracking, fuzzy Model Predictive Control (MPC), front-wheel rotation compensation and rear-wheel active steering control, lateral stability

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn