现代制造工程 ›› 2025, Vol. 539 ›› Issue (8): 141-150.doi: 10.16731/j.cnki.1671-3133.2025.08.016

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

基于CloFormer-Bi-LSTM的液压泵故障诊断方法

宋宇宁   

  1. 营口理工学院机械与动力工程学院,营口 115014
  • 收稿日期:2024-10-30 出版日期:2025-08-18 发布日期:2025-09-09
  • 通讯作者: 宋宇宁,副教授,博士,主要研究方向为机械系统建模与仿真。E-mail:songyuning1985@163.com。
  • 基金资助:
    辽宁省教育厅基本科研项目基金项目(JYTMS20230063);辽宁省自然科学基金营口联合计划项目

Hydraulic pump fault diagnosis method based on CloFormer-Bi-LSTM

SONG Yuning   

  1. Department of Mechanical and Power Engineering,Yingkou Institute of Technology, Yingkou 115014,China
  • Received:2024-10-30 Online:2025-08-18 Published:2025-09-09

摘要: 针对液压泵故障诊断中信号复杂性高、空间特征信息提取能力不足的问题,提出一种结合CloFormer和Bi-LSTM的故障诊断方法。该方法将Bi-LSTM神经网络嵌入到CloFormer网络,加强模型对故障特征的学习能力,并提高模型对全局长距离信息和局部时序信息的表征性能。同时,设计一种多层特征信息融合结构,学习和融合多尺度特征,并促进特征信息的流动和传递。最后,将所提方法应用到液压泵故障诊断任务,验证所提方法的有效性。结果表明,所提方法实现了5类液压泵状态的准确诊断,准确率和F1分数分别达到98.74 %和98.85 %,优于其他5种对比方法。

关键词: 液压泵, 故障诊断, CloFormer, 双向长短时记忆网络, 全局局部信息

Abstract: In response to the issues of high signal complexity and insufficient spatial feature extraction capability in hydraulic pump fault diagnosis,a fault diagnosis method combining CloFormer and Bi-LSTM was proposed. This method embedded the Bi-LSTM neural network into the CloFormer network to enhance the model′s learning capability of fault features and improve the representation performance of global long-distance information and local temporal information. Additionally,a multi-layer feature fusion structure was designed to learn and integrate multi-scale features,promoting the flow and transfer of feature information. Finally,this proposed method was applied to the task of hydraulic pump fault diagnosis to verify its effectiveness. The results demonstrate that the proposed method achieves accurate diagnosis of 5 categories of hydraulic pump states,with accuracy and F1 scores reaching 98.74 % and 98.85 % respectively,outperforming other 5 comparative methods.

Key words: hydraulic pump, fault diagnosis, CloFormer, bidirectional long short-term memory network, global-local information

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn