[1] KANG R K,ZHANG Y,GAO S,et al.High surface integrity fabrication of silicon wafers using a newly developed nonwoven structured grind-polishing wheel[J].Journal of Manufacturing Processes,2022,77: 229-239. [2] 张瑜,康仁科,高尚,等.湿式机械化学磨削单晶硅的软磨料砂轮及其磨削性能[J].机械工程学报,2023,59(3): 328-336. [3] WANG H,DONG Z G,YUAN S,et al.Effects of tool geometry on tungsten removal behavior during nano-cutting[J].International Journal of Mechanical Sciences,2022,225: 107384. [4] LI P H,GUO X G,YUAN S,et al.Effects of grinding speeds on the subsurface damage of single crystal silicon based on molecular dynamics simulations[J].Applied Surface Science,2021,554:149668. [5] 田海兰,韩涛,闫少华,等.单晶硅纳米磨削亚表面损伤形成机制及其抑制研究[J].制造技术与机床,2023(3):24-30. [6] LIU C L,TO S,SHENG X X,et al.Molecular dynamics simulation on crystal defects of single-crystal silicon during elliptical vibration cutting[J].International Journal of Mechanical Sciences,2023,244: 108072. [7] CHEN Y,HU Z W,JIN J F,et al.Molecular dynamics simulations of scratching characteristics in vibration-assisted nano-scratch of single-crystal silicon[J].Applied Surface Science,2021,551: 149451. [8] DAI H F,CHEN G Y,FANG Q H,et al.The effect of tool geometry on subsurface damage and material removal in nanometric cutting single-crystal silicon by a molecular dynamics simulation[J].Applied Physics A-Materials Science & Processing,2016,122: 804. [9] LI J,FANG Q H,ZHANG L C,et al.Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations[J].Applied Surface Science,2015,324: 464-474. [10] 吴珍珍,刘一扬,韩涛,等.基于分子动力学的GaN纳米磨削亚表面损伤形成机制[J].微纳电子技术,2022,59(12): 1368-1374,1382. [11] WANG H,KANG R K,BAO Y,et al.Microstructure evolution mechanism of tungsten induced by ultrasonic elliptical vibration cutting at atomic/nano scale[J].International Journal of Mechanical Sciences,2023,253: 108397. [12] 吴玉厚,王浩,李颂华,等.氮化硅陶瓷磨削热特性与表面成形机制[J].表面技术,2019,48(12): 360-368. [13] 周云光,李红阳,田川川,等.SiC陶瓷磨削机理与表面质量研究[J].组合机床与自动化加工技术,2022,577(3): 156-160. [14] 王浩.氮化硅陶瓷磨削热特性与表面质量研究[D].沈阳: 沈阳建筑大学,2020. [15] 刘盛,丁凯,李奇林,等.氧化锆陶瓷超声辅助磨削表面质量试验研究[J].现代制造工程,2023(1): 97-103. [16] 吴玉厚,王浩,孙健,等.氮化硅陶瓷磨削表面质量的建模与预测[J].表面技术,2020,49(3): 281-289. [17] 邱喆,马廉洁,孙立业,等.二维超声振动磨削氧化锆陶瓷表面形貌及粗糙度试验研究[J].现代制造工程,2023(1): 10-15. |