[1] LU P,WU M,TAN H,et al.A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems[J]. Journal of Intelligent Manufacturing,2018,29(1):19-34. [2] 吴锐,郭顺生,李益兵,等.改进人工蜂群算法求解分布式柔性作业车间调度问题[J]. 控制与决策,2019,34(12):2527-2536. [3] XIE J,LI X,GAO L,et al.A hybrid genetic tabu search algorithm for distributed flexible job shop scheduling problems[J]. Journal of Manufacturing Systems,2023,71:82-94. [4] 吴秀丽,刘夏晶.差分进化算法求解分布式柔性作业车间调度问题[J]. 计算机集成制造系统,2019,25(10):2539-2558. [5] 李瑞,王凌,龚文引.知识驱动的模因算法求解分布式绿色柔性调度[J]. 华中科技大学学报(自然科学版),2022,50(6):55-60. [6] 刘胜辉,任娟,张淑丽.柔性作业车间调度的分布式粒子群优化算法[J]. 哈尔滨理工大学学报,2017,22(3):1-7. [7] LI R,GONG W,WANG L,et al.Surprisingly Popular-Based Adaptive Memetic Algorithm for Energy-Efficient Distributed Flexible Job Shop Scheduling[J]. IEEE Transactions on Cybernetics,2023,53(12):8013-8023. [8] WANG G,LI X,GAO L,et al.Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D[J]. Swarm and Evolutionary Computation,2021,62:100858. [9] LU C,GAO L,YI J,et al.Energy-Efficient Scheduling of Distributed Flow Shop With Heterogeneous Factories:A Real-World Case From Automobile Industry in China[J]. IEEE Transactions on Industrial Informatics,2021,17(10):6687-6696. [10] SHAO Z,SHAO W,CHEN J,et al.A feedback learning-based selection hyper-heuristic for distributed heterogeneous hybrid blocking flow-shop scheduling problem with flexible assembly and setup time[J]. Engineering Applications of Artificial Intelligence,2024,131:107818. [11] LI R,GONG W,WANG L,et al.Co-evolution with deep reinforcement learning for energy-aware distributed heterogeneous flexible job shop scheduling[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2024,54(1):201-211. [12] 陆心屹,韩晓龙.基于强化学习的改进NSGA-Ⅱ求解柔性作业车间节能调度问题[J]. 现代制造工程,2023(8):22-35. [13] LUO S.Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning[J]. Applied Soft Computing Journal,2020,91:106208-106208. [14] LI R,GONG W,WANG L,et al.Double DQN-based coevolution for green distributed heterogeneous hybrid flowshop scheduling with multiple priorities of jobs[J]. IEEE Transactions on Automation Science and Engineering,2023,21(4):1-13. [15] LI X,GAO L.An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[J]. International Journal of Production Economics,2016,174:93-110. [16] DEB K,AGRAWAL S,PRATAP A,et al.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J]. IEEE Trans.Evolutionary Computation,2002,6(2):182-197. [17] 张守京,杜昊天,侯天天.求解多目标双资源柔性车间调度问题的改进NSGA-Ⅱ算法[J]. 机械科学与技术,2022,41(5):771-778. [18] TIAN Z,ZHANG Z,NING C,et al.Multi-objective optimization of cable force of arch bridge constructed by cable-stayed cantilever cast-in-situ method based on improved NSGA-Ⅱ[J]. Structures,2024,59:105782. [19] LI P,XUE Q,ZHANG Z,et al.Multi-objective energy-efficient hybrid flow shop scheduling using Q-learning and GVNS driven NSGA-Ⅱ[J]. Computers and Operations Research,2023,159:106360. [20] TAFRIHI E B,LUISA C.Operative generative design using non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ)[J]. Automation in Construction,2023,155:105026. [21] YANG H,WANG Z,GAO Y,et al.Bi-objective multi-mode resource-constrained multi-project scheduling using combin-ed NSGA-Ⅱ and Q-learning algorithm[J]. Applied Soft Computing,2024,152:111201. [22] BALAS E,VAZACOPOULOS A.Guided local search with shifting bottleneck for job shop scheduling[J]. Management science,1998,44(2):262-275. [23] WANG Z,SCHAUL T,HESSEL M,et al.Dueling network architectures for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on Machine Learning (ICML).[S.l.] :[s.n.] ,2016:1995-2003. |