现代制造工程 ›› 2024, Vol. 522 ›› Issue (3): 15-22.doi: 10.16731/j.cnki.1671-3133.2024.03.003
张若语, 胡友民, 吴波, 杨晔, 秦峻峰
ZHANG Ruoyu, HU Youmin, WU Bo, YANG Hua, QIN Junfeng
摘要: 随着科学技术的发展,生产安全和车间管理问题越来越受到重视。传统车间在管理上多依靠人工,使得车间扰动事件发现不及时,扰动认定不清楚,不利于迅速解决扰动事件和保障人员设备安全。为提高管理效率和保障安全,提出一种基于蝙蝠算法优化的概率神经网络(Bat Algorithm-Probabilistic Neural Network,BA-PNN)算法和数字孪生的车间扰动判定方法。首先通过传感器采集数据并对其进行分析和预处理;随后搭建传统概率神经网络(Probabilistic Neural Network,PNN)模型和以算法识别率为优化目标的BA-PNN扰动判定模型,并结合数字孪生技术将BA-PNN模型融入孪生平台;最后通过仿真与结果分析,对比优化前模型效果及孪生平台特点,该模型识别效果较之前显著提高,证明了方法的有效性。
中图分类号:
版权所有 © 《现代制造工程》编辑部 地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |