现代制造工程 ›› 2024, Vol. 531 ›› Issue (12): 1-8.doi: 10.16731/j.cnki.1671-3133.2024.12.001

• 试验研究 •    下一篇

基于刚度阻尼特征的神经网络自适应阻抗控制*

党选举1,2, 黄伟健1,2   

  1. 1 桂林电子科技大学电子工程与自动化学院,桂林 541004;
    2 广西智能综合自动化高校重点实验室,桂林 541004
  • 收稿日期:2024-04-23 出版日期:2024-12-18 发布日期:2024-12-24
  • 作者简介:党选举,博士,教授,主要研究方向为神经网络建模与控制、机器人智能控制。黄伟健,硕士研究生,主要研究方向为机器人力柔顺控制。E-mail:xjd69@163.com
  • 基金资助:
    *国家自然科学基金项目(62263004);广西重点研发计划项目(桂科AB23075102)

Neural network adaptive impedance control based on stiffness damping characteristics

DANG Xuanju1,2, HUANG Weijian1,2   

  1. 1 School of Electronic Engineering and Automation,Guilin University of Electronic Technology, Guilin 541004,China;
    2 Key Laboratory of Guangxi College Intelligent Comprehensive Automation, Guilin 541004,China
  • Received:2024-04-23 Online:2024-12-18 Published:2024-12-24

摘要: 针对打磨机器人阻抗控制的力跟踪性能受环境刚度未知和环境位置变化影响的问题,提出了一种基于刚度阻尼特征的神经网络自适应阻抗控制方法。由于环境参数未知导致参考轨迹不易确定,构造了一个自适应PI控制律,进行参考轨迹补偿,减小力跟踪的稳态误差;为了提高力跟踪控制的动态性能,根据力误差对刚度系数及阻尼系数的统一调节规律——刚度阻尼特征,并结合力误差具有时变、非线性的特点,设计了一个描述力误差与刚度阻尼特征关系的激活函数,构建自适应阻抗参数神经网络模型,其输出为刚度系数和阻尼系数,通过基于参考轨迹补偿与自适应阻抗参数神经网络模型融合的阻抗控制,保证力跟踪控制的柔顺性。仿真结果表明,相比于传统阻抗控制和参考轨迹PI补偿的阻抗控制,所提出的自适应阻抗控制方法具有更好的力跟踪效果。

关键词: 力柔顺控制, 未知环境, 参考轨迹补偿, 变阻抗参数模型, 神经网络

Abstract: A neural network adaptive impedance control method based on stiffness damping characteristics was proposed to address the problem that the force tracking performance of impedance control for sanding robots was affected by the unknown environmental stiffness and the change of environmental position.Since the reference trajectory is not easy to be determined due to the unknown environmental parameters,an adaptive PI control law was constructed to compensate the reference trajectory and reduce the steady-state error of force tracking; in order to improve the dynamic performance of the force tracking control,according to the uniform regulation law of the force error on the stiffness coefficient and damping coefficient—stiffness damping characteristics,and combined with that the force error has the characteristics of time-varying and non-linear,an activation function describing the relationship between force error and stiffness damping characteristics was designed,and an adaptive impedance parameter neural network model was constructed,whose outputs were stiffness coefficient and damping coefficient,to ensure the suppleness of force tracking control through the impedance control based on the fusion of the reference trajectory compensation and an adaptive impedance parameter neural network model. The simulation results show that the proposed adaptive impedance control method has better force tracking effect than the traditional impedance control and the impedance control with reference trajectory PI compensation.

Key words: force-flexing control, unknown environment, reference trajectory compensation, variable impedance parameter model, neural network

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn