现代制造工程 ›› 2025, Vol. 538 ›› Issue (7): 72-79.doi: 10.16731/j.cnki.1671-3133.2025.07.009

• 车辆工程制造技术 • 上一篇    下一篇

分布式驱动电动汽车差速转向控制策略研究*

张昊, 屈小贞, 李刚   

  1. 辽宁工业大学汽车与交通工程学院,锦州 121001
  • 收稿日期:2024-08-28 出版日期:2025-07-18 发布日期:2025-08-04
  • 通讯作者: 屈小贞,博士,讲师,主要研究方向为车辆智能化底盘集成控制。E-mail:82707780@qq.com
  • 作者简介:张昊,硕士研究生,主要研究方向为车辆系统动力学及控制。E-mail:1076098467@qq.com
  • 基金资助:
    *2024年辽宁省教育厅高等学校基本科研项目(LJ212410154036);辽宁省教育厅重点攻关项目(JYTZD2023081)

Research on differential steering control strategy of distributed drive electric vehicle

ZHANG Hao, QU Xiaozhen, LI Gang   

  1. School of Automobile and Traffic Engineering,Liaoning University of Technology,Jinzhou 121001,China
  • Received:2024-08-28 Online:2025-07-18 Published:2025-08-04

摘要: 为提高分布式驱动电动汽车在不同转向工况下的行驶稳定性,协调车轮之间的转速差控制,设计了一种复合转速控制和滑移率控制的差速转向控制策略。首先,研究最佳滑移率和路面附着系数之间的关系,拟合二者关系式,通过控制使其始终处在最佳滑移率附近;然后,通过模糊控制器匹配实际横摆角速度与理想横摆角速度差值、实际质心侧偏角和理想质心侧偏角差值和车速为输入,输出为2种方法的协调系数,在稳定状态下,基于转速控制,通过滑模变结构控制实现转速的期望跟踪,在不稳定状态下,基于滑移率控制,通过滑模变结构控制计算附加横摆力矩,并利用单双轮切换控制器实现力矩分配控制;最后,通过仿真进行验证,结果表明,在高速低附着工况下,相比于单一控制方法,该控制策略使横摆角速度峰值和质心侧偏角峰值最大分别减小了37.96 %和52.82 %,极大地提高了汽车的操纵稳定性。

关键词: 电动汽车, 稳定性, 差速转向控制, 协调系数

Abstract: In order to improve the driving stability of distributed drive electric vehicles under various steering conditions and coordinate the rotational speed difference control between wheels, a differential steering control strategy integrating both a composite rotational speed control method and a slip rate control method is proposed. Firstly, the relationship between the optimal slip rate and the road adhesion coefficient is investigated, and their correlation is fitted to ensure the system operates near the optimal slip rate. Then, a fuzzy controller is employed to process the inputs-including the deviation between the actual yaw rate and the desired yaw rate, the deviation between the actual side slip angle and the desired side slip angle, and the vehicle speed, and output a coordination coefficient for the two control methods. Under stable conditions, the rotational speed control method is utilized to achieve desired wheel speed tracking via sliding mode variable structure control. Under unstable conditions, the slip rate control method calculates the additional yaw moment by sliding mode variable structure control, while a single/dual-wheel switching controller allocates the torque. Finally, simulation results shown that, under high-speed and low-adhesion conditions, the proposed control strategy reduces the maximum yaw rate and side slip angle by 37.96 % and 52.82 % respectively, compared to a single control method, significantly improving vehicle handling stability.

Key words: electric vehicle, stability, differential steering control, coordination coefficient

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn