现代制造工程 ›› 2025, Vol. 540 ›› Issue (9): 1-11.doi: 10.16731/j.cnki.1671-3133.2025.09.001

• 先进制造系统管理运作 •    下一篇

基于DQN的改进NSGA-Ⅱ求解多目标柔性作业车间调度问题

郑国梁1, 张朝阳1,2, 吉卫喜1,2, 于俊杰1   

  1. 1 江南大学机械工程学院,无锡 214122;
    2 江苏省食品制造装备重点实验室,无锡 214122
  • 收稿日期:2024-09-09 出版日期:2025-09-18 发布日期:2025-09-23
  • 通讯作者: 张朝阳,副教授,博士,主要研究方向为智能制造系统与低碳制造。E-mail:cyzhang@jiangnan.edu.cn。
  • 作者简介:郑国梁,硕士研究生,主要研究方向为智能制造系统。E-mail:244435762@qq.com。
  • 基金资助:
    国家自然科学基金青年科学基金项目(51805213)

Solving multi-objective flexible job shop scheduling problems with an improved NSGA-Ⅱ based on DQN

ZHENG Guoliang1, ZHANG Chaoyang1,2, JI Weixi1,2, YU Junjie1   

  1. 1 School of Mechanical Engineering,Jiangnan University,Wuxi 214122,China;
    2 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122,China
  • Received:2024-09-09 Online:2025-09-18 Published:2025-09-23

摘要: 提出了一种基于深度Q网络(Deep Q-Network,DQN)改进的非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm Ⅱ,NSGA-Ⅱ),以解决以最小化最大完工时间和最小化能源消耗为目标的多目标柔性作业车间调度问题(Multi-Objective Flexible Job shop Scheduling Problem,MO-FJSP)。通过在DQN算法中定义马尔可夫决策过程和奖励函数,考虑选定设备对完工时间和能源消耗的局部及全局影响,提高了NSGA-Ⅱ初始种群的质量。改进的NSGA-Ⅱ通过精英保留策略确保运行过程中的种群多样性,并保留了进化过程中优质的个体。将DQN算法生成的初始解与贪婪算法生成的初始解进行对比,验证了DQN算法在生成初始解方面的有效性。此外,将基于DQN算法的改进NSGA-Ⅱ与其他启发式算法在标准案例和仿真案例上进行对比,证明了其在解决MO-FJSP方面的有效性。

关键词: 深度Q网络算法, 多目标柔性作业车间调度问题, 奖励函数, 非支配排序遗传算法

Abstract: An improved Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) based on the Deep Q-Network (DQN) is proposed to solve the Multi-Objective Flexible Job shop Scheduling Problem (MO-FJSP) with the goals of minimizing makespan and energy consumption. The Markov decision process and a reward function are defined in the DQN algorithm, considering the influence of selected machines on makespan and energy consumption both locally and globally. This approach enhances the quality of the initial population of the NSGA-Ⅱ. The elite retention strategy of the NSGA-Ⅱ is improved to ensure population diversity during execution and preserve high-quality individuals throughout the evolutionary process. The effectiveness of the DQN algorithm in generating initial solutions is validated by comparing its initial solutions with those generated by a greedy algorithm. Furthermore, the improved NSGA-Ⅱ based on the DQN algorithm is compared with other heuristic algorithms on standard and simulation cases, demonstrating its effectiveness in solving MO-FJSP.

Key words: Deep Q-Network (DQN) algorithm, multi-objective flexible job shop scheduling problem, reward function, Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ)

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn